Hierarchical Goal Networks for Probabilistic Planning: Preliminary Results

David H. Chan'}, Mark Roberts’, Dana S. Nau'~

'Department of Computer Science and “Institute for Systems Research, University of Maryland, College Park, MD, USA
3Navy Center for Applied Research in Artificial Intelligence, U.S. Naval Research Laboratory, Washington, DC, USA
dhchan @cs.umd.edu, mark.c.roberts20.civ@us.navy.mil, nau@umd.edu

Abstract

Hierarchical goal networks (HGNs) provide a framework for
goal-directed planning by decomposing high-level goals into
ordered subgoals. While effective in deterministic settings,
HGN planning has not been extended to handle stochastic do-
mains. We introduce a new formalism for probabilistic HGN
planning with task-insertion semantics, enabling probabilis-
tic planners to incorporate domain knowledge from goal de-
composition methods. This formalism retains the efficiency
and scalability of classical HGN planning while supporting
probabilistic reasoning and online search. We present PHGN-
UCT, a UCT-based online planner that leverages hierarchical
methods when available and falls back on UCT search when
they are not, enabling planning under partial domain models.
Preliminary experiments demonstrate that PHGN-UCT can
effectively exploit even incomplete domain knowledge to out-
perform standard UCT planning, suggesting that probabilistic
HGN methods are an effective way to incorporate domain
knowledge in probabilistic planning.

1 Introduction

Hierarchical planning formalisms introduce a task hierar-
chy to allow rich domain-specific guidance and facilitate
reasoning at multiple levels of abstraction (Ghallab, Nau,
and Traverso 2016, 2025). Hierarchical task network (HTN)
planning achieves this through methods which recursively
break down compound tasks into sub-tasks until a sequence
of primitive actions is identified. However, HTN planning
suffers from several key limitations, including the difficulty
of designing domain-independent heuristics and the need for
a complete set of expert-defined methods. Hierarchical goal
networks (HGNs) address these challenges by decomposing
goals—rather than tasks—into subgoals (Shivashankar et al.
2012, 2013). This enables the ability to specify goals declara-
tively and leverage reasoning techniques from classical plan-
ning to augment goal decomposition, all while maintaining
the expressivity of HTN planning (Alford et al. 2016).
Real-world domains often involve uncertainty, where ac-
tions can produce nondeterministic outcomes (Patra et al.
2020, 2021). Fully observable nondeterministic (FOND)
models capture such behavior, and recent work has extended
HTN planning to operate within the FOND framework (Chen
and Bercher 2021, 2022; Yousefi and Bercher 2024). How-
ever, many of the properties of HGN planning that make it an

attractive formalism for deterministic planning also extend to
the probabilistic setting. In particular, the goal-based structure
of HGNs enables planners to reason over ordered sequences
of goals, a form of temporally extended goal. This makes
HGNs especially well-suited for integration with probabilis-
tic planners that rely on online search, where flexibility and
adaptability to dynamic environments and stochastic action
outcomes are critical, and strict procedural task sequences
may be too brittle. Moreover, task-insertion semantics in
HGN planning allows executing actions that do not imme-
diately contribute to a goal, thus supporting the interleaving
of goal decomposition and heuristic-guided action selection.
This provides a principled basis for planning approaches that
integrate hierarchical domain knowledge with search.

In this paper, we introduce probabilistic HGN planning,
a new formalism that extends HGN planning to probabilis-
tic domains—analogous to how FOND HTN planning ex-
tends classical HTN planning. To leverage the new formalism,
we also develop an online probabilistic planning algorithm,
PHGN-UCT, which embeds the hierarchical guidance and
domain knowledge of HGNs into UCT search. We adopt task-
insertion semantics, which provides a crucial mechanism for
planning with incomplete domain models. The planner takes
a hybrid approach that can leverage methods when available,
but will otherwise fall back on standard search.

We present preliminary results on a hand-crafted domain
suggesting that PHGN-UCT can effectively leverage hier-
archical domain knowledge. In our tests, providing more
methods consistently improves performance over a standard
UCT planner with no methods, indicating that even imperfect
or incomplete domain knowledge can significantly accelerate
probabilistic planning compared to standard UCT. In sum-
mary, our contributions are a novel probabilistic HGN plan-
ning formalism and a UCT-based algorithm, demonstrating
the benefit of combining hierarchical structure and domain
knowledge with search in stochastic domains.

2 Probabilistic HGN Planning

Following the definitions of partial-order classical HGN's
from Alford et al. (2016), let £ be a propositional language
with a set atoms X" and propositional formulae . A goal net-
work is a tuple gn = (I, <, «), where I is a set of symbols
which are indices, or labels, for goals, < C I x [is a partial or-
deron I, and o : I — JF maps each symbol in I to a goal for-

mula. This labeling of goals is necessary to differentiate mul-
tiple occurrences of the same goal in the goal network—the
labels will be unique while the goal formulae they map to un-
der o may be equivalent. We denote the set of unconstrained
goals as UC(gn) = {i € I | ¢ has no <-predecessors}.

Two goal-networks (I, <, «) and (I, <’, o) are isomor-
phic if there exists a bijection f : I — I’ such that
i <11 <= f@i) < f(@) and a(i) = o/(f(7)) for all
1 € I. This isomorphism relation induces a quotient set of
equivalence classes of all goal networks. Going forward, we
fix G = {(I1, <1, 1), ({2, <2, a2),...} to be a complete
set of representatives of this quotient set of all goal networks
such that forall ¢ # j, ; N [; = &.

A method m is a tuple (pre(m),post(m),sub(m)),
where pre(m), post(m) € F are the pre- and postcondi-
tion of m, respectively, and sub(m) = (I, <m,am) € G
is a goal network. A method is relevant to a subgoal ¢ € I
in a goal network gn = (I, <, «) if at least one literal in the
negation-normal form (NNF) of post(m) matches a literal in
the NNF of «(¢). This ensures that at least part of «(¢) is true
by accomplishing post(m). To ensure that m accomplishes
its own goal, we require that there exists ¢ € I,,, such that
(i) = post(m) and forall j € I,,,,j < i.

A probabilistic HGN planning domain is a tuple D =
(S, M, A, ~,Pr), where

e S C 2% is a finite set of states;
e M C F x F x (3 is a finite set of methods;

e AC Fx 22%x2% ¢ 4 finite set of nondeterministic ac-
tions a = (pre(a),eff(a)) € A where pre(a) € F is
the precondition, and eff(a) € 22"x2% i 4 set of pairs
(add(a), del(a)) of add effects add(a) C X and delete
effects del(a) C X;

e v:8 x A — 29 is a transition function where (s, a)
is defined iff s |= pre(a), and y(s,a) = {(s\del(a)) U
add(a) | (add(a),del(a)) € eff(a)}; and
* Pr(- | s,a) is a probability distribution over (s, a),
where for all s' € (s, a), Pr(s’ | s, a) is the probability
of reaching state s’ when action a is executed in state s.
An action or method w is applicable in state s if s = pre(u).

A node is a pair n = (s, gn), where s € S is a state, and
gn = (I,<,a) € G is a goal network. In classical HGN
planning, there are three forms of node progression: action
application, goal decomposition, and goal release. Analogous
forms of node progression extend to probabilistic HGN plan-
ning as follows: Let (s, gn) be a node, where gn = (1, <,).

* action application: Let ¢ € A be an action applicable in
s. Application of a probabilistic action a yields the node
(s’, gn) with probability Pr(s’ | s, a), for all s’ € v(s,a).
We denote this by (s, gn) ~ ngp(s, gn). Note that under
task-insertion semantics, actions need not be “relevant” to

an unconstrained subgoal to be applied.

* goal decomposition: Let i € UC(gn), and let m
be a method relevant to ¢ and applicable in s, where
sub(m) = gn,, = (Im, <m, @,). Goal decomposition
by m prepends gn with gn,, to yield the node (s, gn'),
where gn' = (1 U I, < U < U (I X {i}), @ U am).
We denote this by (s, gn’) = Pdec (s, gn).

* goal release: Let i € UC/(gn), and suppose s = a(i).
Release of subgoal 7 removes it from gn if it is satisfied in
the current state, to yield the node (s gn'), where gn’ =
(I\{i}, {(in,i2) € <[in # D)}, {(',9) € [7 # i}).

We denote this by (s, gn’) = P?,(s, gn).

This model of probabilistic HGN planning operates under
task-insertion semantics, which allows an action to be applied
whenever an action’s preconditions are supported by the cur-
rent state. This is an extension of the typical HGN planning
semantics where actions must be motivated by the hierarchy,
i.e. relevant to an unconstrained goal in the goal network,
to be executed. This more flexible formalism is helpful in
probabilistic settings and with incomplete domain models.

A probabilistic HGN planning problem is a tuple P =
(D, so, gng), where D is a probabilistic HGN planning do-
main, so € S is the initial state, and gn, is the initial goal
network. Note that the standard planning paradigm with
a standalone goal g can be represented as a goal network
({9},2,{(g,9)}). where g is any symbol for g. We use gn 4
to denote the empty goal network gn, = (&, &,).

A solution to a probabilistic HGN planning problem takes
the form of an action-method policy, which is a partial
mapping 7 : S x G — AU M from a node to either an
action ¢ € A or a method m &€ M. For the policy to be
well-formed, we require that for all (s, gn) in the domain of
« the following conditions hold: gn = (I, <,) # gng; if
7(s,gn) = a € A then s |= pre(a); and if w(s, gn) =m €
M then s |= pre(m) and m is relevant to some i € UC(gn).

To classify the different types of solutions to a probabilistic
HGN planning problem, let P = (D, s, gn,) and let 7 be an
action-method policy for P. We define Graph(, so, gny) =
(V,E,p), where V C S x Gisasetofnodes, E CV xV
is a set of edges, and p : E — (0, 1] is a weight function. We
construct Graph(w, sg, gng) as follows:

* (s0,9n0) €V

* If (s,gn) € V and 7(s,gn) = a € A, then for all s’ €
v(s,a), (s',gn) € V and e = ((s, gn) (s',gn)) € E,

w1thp() =Pr(s' | s,a).

e If (s,gn) € V, and 7r(s gn) =m € M isrelevant to i €
UC (gn), then (s, gn’) € V and e = ((s, gn), (5, gn')) €
E with p(e) = 1, where (s, gn’) = Py (s, gn).

» If (s, gn) € V,and there exists i € UC(gn) s.t. s = (i),
then (s, gn’) € V and e = ((s, gn), (s, gn’)) € E with
p(e) = 1, where (s, gn’) = P2, (s, gn).

Graph(m, so, gng) = (V, E,p) defines the reachability
graph, or “execution structure” (Yousefi and Bercher 2024),
induced by policy 7 from initial node ny = (sg, gn,), where
F is a set of directed edges connecting nodes in V' via node
progression by m, and p are edge weights corresponding
to the probability of the node progression. Note that goal
decomposition and goal release are deterministic.

Letn = (s, gn) € V. nis terminal if there are no outgoing
edges from n, and n is a goal node if gn = gn; note that
all goal nodes are necessarily terminal. A history o from
n is a finite sequence of nodes ¢ = (ng,n1,...,np) such
that ng = n, Vj € {1,...,h}, (n;—1,n;) € E, and ny, is
terminal. We write H (7, n) to denote the set of all histories of

Algorithm 1: A UCT planning algorithm for probabilis-
tic HGN planning problems. D = (S, M, A,~,Pr) is a
probabilistic HGN planning domain, s is the current state,
gn = (I, <, «) is the current goal network, n,, is the num-
ber of rollouts to perform at each step, d is the maximum
rollout depth, w : I — RZ? is a weighting function, and
Q : S — 2M is the current map from states to the sets of
methods that have been used in those states.

1: procedure PHGN-UCT(D, s, gn, ny,, d, w, 1)

2 if gn = gn, then return success

3: foralli e UC(gn)do

4 if s = (i) then
5: (s,gn) < P (s, gn)
6
7
8

return PHGN-UCT(D, s, gn, sy, d, w, Q)
for n,, times do
RoLLOUT(D, s, gn, d, w,) > learn Qs

U < {m € M | mis applicable in s, relevant to
some i € UC(gn), and not in 2(s)}

10 U<+ UU{a€ A]|aisapplicable in s}

11: if U = @ then return failure

12: u < argmax) w(i)Qu) (s, u)
uwelU el

13: if v is a method then

14: Q(s) « Q(s) U{u}

9:

15: foralli € UC(gn) s.t. u is relevant to ¢ do

16: (s,gn) < P (s, gn)

17: return PHGN-UCT(D, s, gn, 1y, d, w, Q)

18: else > u is an action
19: s < APPLY (s, u)

20: return PHGN-UCT(D, ¢/, gn, nyo, d, w,)

policy 7 from node n. The probability of history is defined as
Pr(o | m,n) = Hllel p(nj_1,n;). A policy = is a solution
policy for P = (D, sg, gng) if Graph(m, sg, gn) contains a
goal node. A solution policy 7 is

¢ safe if for all nodes n in Graph(m, sq, gn,), there ex-
ists o € H(m,n) that terminates at a goal node; or
equivalently, > . Pr(o) = 1, where H* = {0 €
H(m, (s0,gno)) | o terminates at a goal node }. Other-
wise, 7 is unsafe.

* cyclic safe if 7 is safe and Graph(m, so, gng) contains a
cycle; it is acyclic safe if it is safe and Graph(m, so, gn)
contains no cycles.

3 Probabilistic HGN Planning Algorithm

We propose an online HGN-guided probabilistic planning
algorithm based on Monte Carlo tree search (MCTS). MCTS
is a general-purpose MDP search algorithm, well-known for
its success in computer Go (Silver et al. 2016). It is well-
suited to online probabilistic planning tasks (Keller and Eye-
rich 2012), where it incrementally builds a search tree using
Monte Carlo rollouts to estimate the values of states. Many
variants of MCTS exist (Gelly and Silver 2011; Feldman and
Domshlak 2014; Painter, Lacerda, and Hawes 2020), but the
traditional and most popular is Upper Confidence bounds
applied to Trees (UCT) (Kocsis and Szepesvari 2006), which

Algorithm 2: The Monte Carlo rollout procedure for PHGN-
UCT. D, s, gn, w, and 2 are as defined in Algorithm 1. d is
the remaining rollout depth, and util is a strictly decreasing
utility function over cost.), and IV, are global maps with
default value 0. ROLLOUT returns a map A : I — RZY where
A(%) is the rollout cost for subgoal 7.

1: procedure ROLLOUT(D, s, gn, d, w,)
2: if gn = gn, then return @
forall: € UC(gn) do
if s = (i) then
(Sa gn) — Pﬁel(sv gn)
return ROLLOUT(D, s, gn,d, w,) U {(4,0)}
U < {m € M | m is applicable in s, relevant to
some ¢ € UC(gn), and not in §2(s)}
U<+ UU{a € A]aisapplicable in s}
9: ifd=0o0rU = @ thenreturn I x {d}
10: < argmaxy w(i)UCB1(Qa), Nagi), 5,)
uelU el

® N 2Nk

11: if w is a method then

12: Q(s) « Q(s) U{u}

13: foralli € UC(gn) s.t. u is relevant to i do
14: (s, gn) < Py (s, gn)

15: A < ROLLOUT(D, s, gn, d, w, Q)

16: else > u is an action
17: sample (s', gn) ~ Py, (s, gn)

18: A+ RoLLout(D, ¢, gn,d — 1,w,)

19: A {(, @) +1)|iel}

20: foralli c I do N (500 O (su0) St A (1)
21: Qa(i)(sau) e 1+7\/E;)(,;)és,u)

22: Na(i)(s) < Na(i)(s) +1

23: Nagiy(s,u) <= Noy(s,u) +1

24: return \

leverages principles from the multi-armed bandit problem to
strike a balance between exploration and exploitation during
planning (Auer, Cesa-Bianchi, and Fischer 2002). We choose
UCT because its simplicity and well-understood behavior
make it a suitable baseline for analyzing the impact of HGNs
on probabilistic planning performance.

Our PHGN-UCT algorithm (Algorithm 1), is an online
probabilistic planner which uses the rollout procedure shown
in Algorithm 2. At each planning step, a fixed number of
rollouts are performed (Lines 7-8), after which the most
promising node progression is selected (Line 12) and ap-
plied. The resulting state is then observed, and the process
repeats until a goal node is reached. Importantly, PHGN-UCT
operates under our formalism of HGNs with task-insertion
semantics, allowing any action applicable in the current state
to be executed, regardless of its relevance to any subgoal.

PHGN-UCT makes several modifications to the standard
UCT planning procedure. First, UCT must be adapted to
select both actions and methods, mirroring the form of an
action-method policy. At a node n = (s, gn), UCT must
search among all actions applicable in s, as well as all meth-
ods applicable in s and relevant to some i € UC(gn). To
capture this, we extend the standard UCT action-value func-

tion (Q to estimate values for both actions and methods. That
is, Q(s,u) is the estimated reward of progressing the current
node n using u, where w is either an action (corresponding
to action application P,,,) or method (corresponding to goal

decomposition P}"). We also restrict the set of applicable
methods to those which have not been used in s, precluding
the same method from being used repeatedly in the same
state. Whenever a subgoal i € UC(gn) is satisfied in s, it is
immediately released from gn.

Additionally, to manage multiple goals in the goal network,
PHGN-UCT learns a separate ()-function for each subgoal.
That is, for all g € a[I] (the image of I under), Qg4(s, u)
estimates the expected reward of applying action or method
w in state s with respect to g. It also maintains corresponding
values for Ny(;), where N,;)(s,u) is the number of times u
was selected in s, and N, ;) (s) is the number of times s was
visited. This contrasts with standard UCT planning, which
learns a single Q-function aimed at the final planning goal.

To progress nodes, PHGN-UCT chooses the action or
method that maximizes a weighted combination of these Q-
values (Algorithm 1 Line 12). During rollouts, UCB1-values
are used instead of (-values, where

UCBL(Q, N, 5,u) = Q(s,u) + Cy /55 (1)

and C is the exploration constant (Algorithm 2 Line 10).
The weighting is governed by a function w : I — RZ0,
which assigns the importance to each subgoal. A simple
greedy implementation would define w(i) = 1yc(gn)(i),
prioritizing immediate subgoals. However, such a strategy
can be myopic, potentially leading to states that make future
subgoals harder or impossible to achieve. More sophisticated
weighting schemes that balance short-term and long-term
goal achievement may yield better results, but we leave the
exploration of such approaches to future work.

4 Preliminary Results

We ran some preliminary tests of PHGN-UCT on a small
warehouse planning problem. In a grid world, a robot must
move a box from a locked room to a target location by first
retrieving a key. Three HGN methods were created for the
domain, and our experiments varied the number of methods
made available to the planner, from 0 methods (corresponding
to standard UCT) to all 3. Our experiments only captured
the special case of totally-ordered probabilistic HGNs, where
in all goal networks gn = (I, <, a), < is a total order. In
this case, UC(gn) is always a singleton set, so the weighting
function w = 1y (gn) (i) guides the planner to exclusively
search for the next immediate subgoal.

We used a non-heuristic implementation of UCT with
exploration constant C' = V2, a maximum rollout
depth d = 20, and a utility function wutel cost —»
exp(—cost). The number of rollouts was varied in n,, €
{5,10,20,50,...,10000}. The cost of a run of PHGN-UCT
is measured as the number of actions executed (Algorithm
1 Line 19). A maximum cost budget of 100 was imposed.
Table 1 reports the average costs of running PHGN-UCT
across 100 trials on the warehouse problem, varying the num-
ber of methods provided to the planner and the number of

Table 1: Average cost T (lower is better) and standard devia-
tion o of runs of the PHGN-UCT algorithm in the warehouse
planning problem over 100 trials.

0 methods 1 method 2 methods 3 methods

Nro T o T o T T o
5 1000 00 416 187 13.1 134 1.7
10 100.0 0.0 29.7 104 138 13.8 1.6

o
1.6
1.8

20 1000 0.0 21.1 48 137 15 133 14
1.3
1.5

50 1000 0.0 155 25 129 128 13
100 100.0 0.0 133 13 128 . 125 1.2
200 1000 0.0 129 13 132 1.6 125 13
500 1000 0.0 132 16 127 15 128 12
000 1000 0.0 130 14 13.0 14 127 15
2000 96.6 142 128 12 129 15 126 14
5000 689 36.1 131 1.3 129 15 124 12
10000 656 400 127 1.1 126 13 123 1.0

rollouts performed. When no methods are provided, PHGN-
UCT reduces to standard UCT, which serves as the baseline.
Runs which exceeded the cost budget of 100 were halted, and
contributed 100 to the average.

Standard UCT without any HGN methods provided strug-
gles to find a solution in the warehouse planning problem.
However, even a single HGN method boosts performance
significantly, immediately outperforming standard UCT at
10000 rollouts while only using 5 rollouts, and converging to
a near-optimal solution at only 100 rollouts per step. Perfor-
mance consistently improves as more methods are provided,
demonstrating that PHGN-UCT can effectively leverage hier-
archical domain knowledge—even when it is incomplete—to
achieve significantly better performance than standard UCT.
While preliminary, these results suggest that HGNs may be
useful for capturing domain knowledge for probabilistic plan-
ning, and future work should characterize the kinds of prob-
lems where these results hold.

5 Conclusion and Future Work

We introduced a new formalism for partial-order, probabilis-
tic HGN planning with task-insertion semantics. This formal-
ism preserves many of the key benefits of classical HGN plan-
ning while extending its applicability to stochastic domains.
To leverage this formalism, we developed PHGN-UCT, a
UCT-based planner that dynamically interleaves method-
based decomposition and action-level search. Our approach
balances structured hierarchical guidance with adaptive on-
line search, enabling effective planning even in the presence
of incomplete or imperfect domain models.

Preliminary results suggest PHGN-UCT effectively uti-
lizes domain knowledge captured in HGN methods, but fu-
ture work should expand the empirical evaluation across
a broader range of benchmarks. Additionally, future work
should refine the greedy weight function that prioritizes im-
mediate goals, exploring strategies that more effectively trade
off short- and long-term goals. Finally, a formal analysis of
the expressiveness and complexity of probabilistic HGN plan-
ning, particularly in relation to FOND HTN planning (Chen

and Bercher 2022), will help to understand the theoretical
foundations, capabilities, and limitations of this framework.

6 Acknowledgments

This work was supported in part by the U.S. Naval Reseach
Laboratory.

References

Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and Aha,
D. W. 2016. Hierarchical Planning: Relating Task and Goal
Decomposition with Task Sharing. In Proc. IJCAI 2016,
3022-3029.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
Analysis of the Multiarmed Bandit Problem. Mach. Learn.,
47(2-3): 235-256.

Chen, D. Z.; and Bercher, P. 2021. Fully Observable Nonde-
terministic HTN Planning - Formalisation and Complexity
Results. In Proc. ICAPS 2021, 74-84.

Chen, D. Z.; and Bercher, P. 2022. Flexible FOND HTN
Planning: A Complexity Analysis. In Proc. ICAPS 2022,
26-34.

Feldman, Z.; and Domshlak, C. 2014. Simple Regret Opti-
mization in Online Planning for Markov Decision Processes.
J. Artif. Intell. Res., 51: 165-205.

Gelly, S.; and Silver, D. 2011. Monte-Carlo tree search and
rapid action value estimation in computer Go. Artif. Intell.,
175(11): 1856-1875.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press. ISBN
978-1-107-03727-4.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2025. Acting,
Planning, and Learning. Cambridge University Press. ISBN
9781009579346.

Keller, T.; and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In Proc. ICAPS 2012.

Kocsis, L.; and Szepesvéri, C. 2006. Bandit Based Monte-
Carlo Planning. In Proc. ECML 2006, 282-293.

Painter, M.; Lacerda, B.; and Hawes, N. 2020. Convex Hull
Monte-Carlo Tree-Search. In Proc. ICAPS 2020, 217-225.

Patra, S.; Mason, J.; Ghallab, M.; Nau, D. S.; and Traverso,
P. 2021. Deliberative acting, planning and learning with
hierarchical operational models. Artif. Intell., 299: 103523.

Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.; and
Nau, D. S. 2020. Integrating Acting, Planning, and Learning
in Hierarchical Operational Models. In Proc. ICAPS 2020,
478-487.

Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. S. 2013.
The GoDeL Planning System: A More Perfect Union of
Domain-Independent and Hierarchical Planning. In Proc.
IJCAI 2013, 2380-2386.

Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R. 2012.
A hierarchical goal-based formalism and algorithm for single-
agent planning. In Proc. AAMAS 2012, 981-988.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, L.; Lillicrap, T. P.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nat., 529(7587): 484-489.

Yousefi, M.; and Bercher, P. 2024. Laying the Foundations for
Solving FOND HTN Problems: Grounding, Search, Heuris-
tics (and Benchmark Problems). In Proc. IJCAI 2024, 6796—
6804.

