HDDL Parser:
A Realtime Hierarchical Planning Language Validation Toolkit

Mohammad Yousefi, Pascal Bercher

School of Computing, The Australian National University, Canberra, Australia
mohammad.yousefi @anu.edu.au, pascal.bercher @anu.edu.au

Abstract

We present HDDL Parser, an open-source language server
providing real-time validation for the Hierarchical Planning
Domain Definition Language (HDDL). The toolkit imple-
ments the well-known Language Server Protocol (LSP), en-
abling integration into any IDE, with a provided VS Code
client demonstrating seamless real-time error detection and
correction feedback. The language server performs a compre-
hensive analysis including: syntax validation, parameter in-
consistencies, undefined entities, duplicate definitions, cyclic
hierarchies, contradictory formulae, and type checking. Im-
plemented in Rust, the correctness of the HDDL Parser has
been validated against all 33 domains from the hierarchical
track of the IPC 2023, and even detected critical errors in one
of those domains. By providing automated quality assurance
directly within the development environment, this tool signif-
icantly reduces debugging time and improves model reliabil-
ity for hierarchical planning applications.

Code — https://github.com/koala-planner/HDDL-Parser
Demo — https://youtu.be/hRZ21HmcEQU

Introduction

Domain modeling often involves iterative refinement and
debugging, where syntax errors, type mismatches, and se-
mantic inconsistencies can significantly slow development.
Traditional validation approaches require manual compi-
lation and error checking, creating a disconnect between
modeling activities and error detection. This process typ-
ically involves passing objects in different formats be-
tween various programs, each with specific requirements.
We present a comprehensive open-source toolkit, HDDL
Parser, that addresses these challenges through real-time val-
idation, seamless IDE integration, and standardized seri-
alization for the Hierarchical Planning Domain Definition
Language (HDDL) (Holler et al. 2020). Our toolkit provides
both a command-line interface for standalone validation and
a Language Server Protocol (LSP) implementation that en-
ables real-time checking within modern IDEs as the domain
is being developed. By eliminating the need for manual com-
pilation cycles, developers can identify and resolve errors
immediately as they occur when modeling a problem. A

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

screenshot of how this works in practice is provided in Fig-
ure 1. Once correctness is verified, the software offers the
abstract syntax tree in JSON format that enables planners
and other validation mechanisms, in any programming lan-
guage, to access the parsed tree rather than the raw strings,
which further saves time in development. The VSCode client
is publicly available in the extension marketplace as “HDDL
Parser”.

Features

HDDL Parser is designed with performance, usability, and
reliability at its core. The rest of this section highlights the
key features of this software.

Fast and Reliable

HDDL Parser aims to serve as the backbone of model vali-
dation in hierarchical planning, making efficiency and relia-
bility critical to our design decisions.

* Rust-powered engine: Built with Rust’s memory safety
guarantees, our tool can operate reliably over long peri-
ods while maintaining minimal CPU and RAM usage.

* Asynchronous Server: The language server utilizes an
event-driven architecture with high parallelization capa-
bilities. The asynchronicity allows the clients (e.g., VS-
Code) to continue their operation while the server pre-
pares the result.

e Thoroughly Tested: We have tested the command-line
version of this software on all hierarchical domains of the
IPC 2023 (Alford, Behnke, and Schreiber 2024), and a
comprehensive error detection benchmark for hierarchi-
cal planning (Sleath and Bercher 2023). In both cases,
we have found critical errors that were not previously
known. In conjunction with this, we also have 105 unit
tests to ensure that each part is working as expected.

Easy to Use

By complying with industry standards, we make sure HDDL
Parser can be easily used and integrated into any develop-
ment environment.

* Seamless Integration for Users: Our extension for VS-
Code, once installed, is automatically triggered when a
related file is opened or changed.



line 191: type Prt is not defined.

wPC 4 |V
?d1l ?7d2 - /
lidateDeviceConnec
jition (and
(isPart0f ?pl ?d1)

d2)

(isPlugDirection

(isPlugDire
(isSignalSource ?pl 7t)
(isSignalDestination ?p2 7t)

and

datePortConnection 7pl ?p2 7t)

Figure 1: A screenshot of a domain from the IPC2023 benchmarks where we purposefully changed a parameter type from
“Port” to “Prt”. The VSCode client notifies the server about this change, and the server instantly instructs the client to highlight

line 191 as erroneous with a clear error message.

¢ Extensibility for Developers: Based on the industry
standard communication protocol, LSP, developers can
easily integrate this server into IDEs without going into
the internals of our tool.

Real-Time Validation

At the heart of the LSP server is the ability to detect errors as
they occur, and reduce development and debugging efforts.

¢ Character-by-Character Analysis: Errors are detected
and reported instantly as a user modifies a single charac-
ter of the planning files.

e Comprehensive Error Diagnostics: A wide range of
errors—from basic syntax issues to missing primitive re-
finements for compound tasks—are detected, and appro-
priate handling approaches to fix them are provided.

e Immediate Error Visualization: Syntax and semantic
errors are visually marked in the editor as they occur.

* Syntax Highlighting: The extension provides person-
alizable syntax highlighting for HDDL files (e.g., key-
words, predicates, etc.).

Standardized Serializer

Our tool makes communication between different parts of
the ecosystem easier.

* Higher Level Abstraction: Once the validation process
is completed, the abstract syntax tree can be exported,
allowing other software (such as planners) to skip parsing
altogether and further specialize in their area of focus.

¢ Interoperability Bridge: Through JSON message pass-
ing, our tool allows software components in different
programming languages to communicate and work to-
gether seamlessly.

Future Work

Building upon the current capabilities, we plan to extend
the toolkit with deserialization functionality that will en-
able bidirectional communication between the parser and
external tools. This will enable a plugin architecture where
other software can register themselves as specialized valida-
tors, allowing domain-specific checkers and other tools to
contribute additional validation layers beyond our core syn-
tax and semantic checking. Furthermore, we aim to expand
the error detection capabilities, ultimately creating a more
comprehensive and intelligent development environment for
modeling hierarchical planning problems.

Acknowledgements

Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government.

References

Alford, R.; Behnke, G.; and Schreiber, D., eds. 2024. IPC
2023 — Proceedings of the Hierarchical Task Network (HTN)
Track of the 11th International Planning Competition: Plan-
ner and Domain Abstracts.

Holler, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th Association for the Advancement of
Artificial Intelligence (AAAI) conference, 9883-9891. AAAI
Press.

Sleath, K.; and Bercher, P. 2023. Detecting Al Planning
Modelling Mistakes — Potential Errors and Benchmark Do-
mains. In Proceedings of the 20th Pacific Rim International
Conference on Artificial Intelligence (PRICAI), 448—454.
Springer.



