Graphical Navigation in Solution Spaces using PlanPilot

Michelle Kornherr!', Johannes K. Fichte', Dominik Rusovac?, David Speck’®
Sarah Gaggl’, Augusto B. Corréa*, Markus Hecher®, Daniel Gnad'*®
'Link6ping University, Sweden; >TU Dresden, Germany; 3University of Basel, Switzerland
4University of Oxford, UK; >Computer science Research Institute of Lens, France; *Heidelberg University, Germany

hicko047 @student.liu.se, johannes.fichte @liu.se, dominik.rusovac @tu-dresden.de, davidjakob.speck @unibas.ch
sarah.gaggl @tu-dresden.de, augusto.blaascorrea@chch.ox.ac.uk, hecher @cril.fr, daniel.gnad @uni-heidelberg.de

Abstract

Many planning applications require not only a single so-
lution but benefit substantially from having a set of possi-
ble plans from which users can select according to prefer-
ences. Surprisingly, planning research has primarily focused
on quickly finding single plans for decades. Only recently
have researchers started to investigate plan enumeration by
top-k planning, offering more flexibility to the user. But sim-
ply enumerating the k best plans is far from targeted due
to the time-consuming nature of enumeration, likely feeding
many similar plans to the user, and forcing the user to define
filters beforehand. In fact, in extensive search spaces, enu-
meration is hardly practical. We present an approach and a
tool called PlanPilot to navigate solution spaces of plan-
ning tasks iteratively and interactively. We build on answer-
set programming (ASP) to restrict the plan space. To that end,
we employ facets, which are meaningful actions that appear
in some, but not all plans. Enforcing or forbidding such facets
allows for navigating even large plan spaces while ensuring
desired properties quickly and step by step.

Introduction

Many planning applications call for multiple high-quality
plans, which lead to the exploration of natural extensions of
optimal classical planning in the community. A well-known
technique is to find the k best plans by top-£ planning (Katz
et al. 2018; Speck, Mattmiiller, and Nebel 2020; Katz and
Sohrabi 2020) enabling post hoc restrictions for various ap-
plications (Boddy et al. 2005; Sohrabi et al. 2018). But enu-
meration results in major disadvantages. It is computation-
ally costly and yields potentially many similar plans, which
makes exploration entirely impractical. Interestingly, we can
avoid enumeration in many cases, for example, when de-
bugging for actions that unexpectedly never show up (Lin,
Grastien, and Bercher 2023; Gragera et al. 2023), searching
for sets of jointly achievable soft goals (Smith 2004), or ask-
ing for explanations of the absence of solutions that achieve
the desired set of such soft goals (Eifler et al. 2020).

In this paper, we establish a practical approach to navigate
plan spaces iteratively and interactively. We present an im-
plementation, which we call PlanPilot, that enables sys-
tematic reasoning even with many plans. Similar to top-k
planning, we consider the best plans of the given task, with
the difference that we impose a bound on the plan length

instead of the number of computed plans. We employ an ex-
isting ASP encoding for finding bounded plans and reason-
ing over them (Dimopoulos et al. 2019) and take advantage
of counting and facets (Fichte, Gaggl, and Rusovac 2022).
Counting enables us to reason about the plan space with-
out enumerating solutions (Darwiche 2001). Facets have re-
cently been introduced in planning (Speck et al. 2025) and
provide meaningful actions that can be gradually restricted
by the user enforcing or forbidding these actions. Facets are
computationally easier and enable navigation even in large
plan spaces while ensuring desired properties quickly and
step by step. Our demo video illustrates the navigation.!
PlanPilot takes as input a planning task and constructs
an ASP encoding of it. The ASP problem is passed to the
fasb reasoner, which allows user interaction for navigating
the plan space using facets. The user can query PlanPilot
for the number of solutions of the task or list the avail-
able facets (i.e., meaningful actions). All these operations
are fast, so the user can efficiently constrain the set of plans
until a manageable set of solutions with the desired proper-
ties can be enumerated. P1anPilot is publicly available.?

Plan-Space Navigation using ASP

Our PlanPilot tool takes as input the PDDL description of
a planning task and allows for interactive navigation of the
solution space by the user. Figure 1 illustrates the interac-
tion between the components of PlanPilot. First, we use
Fast Downward (Helmert 2006) to find an optimal solution
to obtain the horizon H, which acts as a plan-length bound.
We pass this, together with the grounded task and two con-
figurable parameters, encoding and step-type, to plasp to
encode the planning task in ASP. The encoding type restricts
plan length either exactly to H or let’s H be the upper bound.
The step type distinguishes between concrete and abstract
time steps, which we will explain shortly. The ASP encod-
ing is passed to fasb (and its internal solver c1lingo), which
enables interactive reasoning with facets or plans.

In interactive mode, the user can query PlanPilot for
the number of available facets/plans or a list of these facets/-
plans. In our ASP encoding, facets are meaningful actions
that occur in some, but not all solutions. More specifically,

'Demo video: https://youtu.be/75UngGNr5bc
2Code: https://github.com/mischidream/PlanPilotpp



horizon H
Fast Downward > plasp
ground task

ASP encoding"

—

fasb

solve

AN
~

queries

Interactive Mode
facet / plan navigation

Figure 1: Illustration of PlanPilot’s components.

we turn the occurrence of every action a at a concrete time
step 1 < ¢t < H into a facet occurs(a,t). These facets
are enforcing, which means that we restrict the plans by en-
forcing them to have action a at step t. Additionally, there
are prohibiting facets, denoted ~occurs(a,t), which for-
bids the occurrence of action a at time step ¢. Both kinds of
facets can be activated, which enables the respective restric-
tion, and deactivated again, which removes the restriction.
Using both kinds of facets, the user can iteratively and in-
teractively refine the set of plans according to their require-
ments. At every step, i.e., after (de)activating a facet, the user
can query PlanPilot for the number of remaining facets as
well as the number of remaining plans that satisfy the en-
abled facets. Both, facets and plans, can also be enumerated
at every step. The activation of facets reduces the freedom in
the resulting plan space, which often implies certain action
occurrences along a plan, as no other options exist. These
implied actions can also be listed during navigation.

For use cases where the occurrence of an action is de-
sired at some point in the plan, we leverage the expressive-
ness of ASP by adding the rule occurs_sometime(a) <
occurs(a,t),t > 0. to our encoding. We refer to this vari-
ant as the abstract time steps encoding. If such a facet is ac-
tivated, then a must occur at some step in the plan, allowing
for multiple occurrences of the same action. This is desir-
able in scenarios where the user is not interested in having
a occur at a specific point, e.g., for domain debugging (Lin,
Grastien, and Bercher 2023; Gragera et al. 2023).

Complexity Reasoning over facets is significantly easier
than reasoning over plans (Rusovac et al. 2024; Speck et al.
2025). Therefore, it is advisable to opt for counting and enu-
meration of facets as planning tasks and horizons get larger.
Moreover, enabling more facets limits the plan space consid-
ered by fasb, facilitating reasoning on the remaining space.
Hence, the user can activate facets that correspond to im-
portant plan constraints to simplify the reasoning, such that
plans can be counted and enumerated efficiently.

Navigation modes Besides enumerating the available
facets, fasb can provide information on what it implies to
activate a facet. This is done by showing the reduction in the
number of facets as well as the number of remaining facets
after activation, which allows for a more targeted interac-
tion. If the user wants to find a small set of plans quickly,
they can activate facets that result in high reduction, which

implies that the set of remaining plans is maximally con-
strained. Alternatively, if the user desires a large, diverse set
of plans, then selecting facets that lead to a low reduction
in the remaining facet count are preferable. This allows the
user to navigate the plan space according to their needs.

Technical aspects PlanPilot comes with a web-based
interface to support plan space navigation. The frontend is
implemented using Vue 3 with TypeScript and Pinia for
state management, while the plans are visualized based on
SVG. The frontend communicates with a Flask backend
via REST endpoints, which in turn manages the execution
of Fast Downward, plasp, and fasb. To avoid redundant
computation, the backend caches results of previous reason-
ing steps. PlanPilot inherits the PDDL language support
of plasp, which includes PDDL 3.1 without durative ac-
tions, numerical fluents, and preferences. We refer to the
plasp repository for a full list of supported features.

Possible extensions All parts of the ASP encoding can be
turned into facets in the same way as it is implemented for
actions. In particular, this holds for state atoms. Thereby,
the user can impose restrictions on the desired solutions not
only by enforcing, or prohibiting, certain actions to occur
on the plan, but also by requiring state atoms to be achieved
in some state along the plan. This could be used, e.g., in
oversubscription planning by encoding soft goals as facets,
using PlanPilot to enforce a desired (set of) soft goals to
be achieved in the goal or in some state along the plan.

Discussion

We present PlanPilot, a tool to navigate plan spaces iter-
atively and interactively. We build on an ASP encoding for
finding solutions and investigating the plan space. The ASP
encoding enables us to consider restrictions on actions and
specific times of these restrictions. We can, step by step, en-
force or prohibit meaningful actions (facets) that are present
or absent in a specific, or any step in the plan.

By combining facets and counting, we can navigate plan
spaces in multiple ways. When exploring, we select facets
that constrain the plan space the least. Whereas, when aim-
ing for a particular target, we take facets that maximally con-
strain the plan space. Thereby, users can either obtain large
sets of diverse plans, or quickly converge to very few plans,
depending on application needs. Slightly extending the ASP
encoding allows us to also reason about restrictions that hap-
pen at any state of the sequence, forcing the plan to achieve
soft goals “on the way”, or as usual in the final state.

We believe that beyond the current features, it is interest-
ing to consider partial-order planning in the navigation, i.e.,
obtaining (minimal) partially ordered plans natively without
adding implications to simulate all steps. We expect support
for loopless plans to be beneficial for many applications, too.
Both of these plan types are non-trivial to integrate, as it is
unclear how to represent them on the ASP level.

In its current form and with many possible extensions,
PlanPilot takes a major step towards making classical
planning explainable to non-expert users. The interface is
easily accessible and can connect to visualizations such as
blocksworld, as shown in our video.



References

Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of Action Generation for Cyber Security Using Classical
Planning. In Proc. ICAPS 2005, 12-21.

Darwiche, A. 2001. Decomposable Negation Normal Form.
JACM, 48(4): 608—647.

Dimopoulos, Y.; Gebser, M.; Liihne, P.; Romero, J.; and
Schaub, T. 2019. plasp 3: Towards Effective ASP Plan-
ning. Theory and Practice of Logic Programming, 19(3):
477-504.

Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2020. A New Approach to Plan-Space Expla-
nation: Analyzing Plan-Property Dependencies in Oversub-
scription Planning. In Proc. AAAI 2020, 9818-9826.

Fichte, J. K.; Gaggl, S. A.; and Rusovac, D. 2022. Rushing
and Strolling among Answer Sets — Navigation Made Easy.
In Proc. AAAI 2022, 5651-5659.

Gragera, A.; Fuentetaja, R.; Olaya, A. G.; and Fernandez, F.
2023. A Planning Approach to Repair Domains with Incom-
plete Action Effects. In Proc. ICAPS 2023, 153-161.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191-246.

Katz, M.; and Sohrabi, S. 2020. Reshaping Diverse Plan-
ning. In Proc. AAAI 2020, 9892-9899.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
Novel Iterative Approach to Top-k Planning. In Proc. ICAPS
2018, 132-140.

Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards Au-
tomated Modeling Assistance: An Efficient Approach for
Repairing Flawed Planning Domains. In Proc. AAAI 2023,
12022-12031.

Rusovac, D.; Hecher, M.; Gebser, M.; Gaggl, S. A.; and
Fichte, J. K. 2024. Navigating and Querying Answer Sets:
How Hard Is It Really and Why? In Proc. KR 2024, In press.
Smith, D. E. 2004. Choosing Objectives in Over-
Subscription Planning. In Proc. ICAPS 2004, 393-401.
Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018. An
Al Planning Solution to Scenario Generation for Enterprise
Risk Management. In Proc. AAAI 2018, 160-167.

Speck, D.; Hecher, M.; Gnad, D.; Fichte, J. K.; and Corréa,
A. B. 2025. Counting and Reasoning with Plans. In Proc.
AAAI 2025, 26688-26696.

Speck, D.; Mattmiiller, R.; and Nebel, B. 2020. Symbolic
Top-k Planning. In Proc. AAAI 2020, 9967-9974.



