Planning-based Toolchain for Automated Regression Testing of Video Games

Tomas Balyo!, Roman Bartik'?, Tomas Bily!2, Luka$ Chrpa'*, Martin Capek!, Michal
Cervenka!, Filip Dvorak!, Stephan Gocht*, Lukas Lipéak!, Viktor Macek', Dominik Rohadek!,
Josef Ryzi', Martin Suda'-?, Dominik Safranek', Slavomir Svancar', G. Michael Youngblood'
IFiluta Al, Inc., 1606 Headway Cir STE 9145, Austin, TX 78754, United States
2Faculty of Mathematics and Physics, Charles University, Prague, Czechia
3Czech Technical University in Prague, Prague, Czechia
4Stephan Gocht - Al Software Engineering, MeiBen, Germany
tomas @filuta.ai, batak @ktiml.mff.cuni.cz, tbily @filuta.ai, lukas.chrpa@cvut.cz, {mcapek, mcervenka, filip} @filuta.ai,
stephan @drgocht.com, {llipcak, viktor, drohacek, josef, msuda, dsafranek, slavo, michael } @filuta.ai

Abstract

Regression video game testing, in a nutshell, deals with test-
ing whether the game mechanics implemented in the game
maintain their functionality even after updating the game
code. Usually, regression testing is performed using test
scripts. While effective, they require manual creation and fre-
quent updates throughout development, making the process
labor-intensive and error-prone. Automated planning can mit-
igate this burden by automatically generating and maintaining
test scripts, as game mechanics can be specified in a plan-
ning domain model using the Planning Domain Definition
Language (PDDL). Individual tests then need to specify ini-
tial states and goals. This demonstration presents a toolchain
that allows for easy integration of planning into a game en-
gine, executing and evaluating specified tests, and collecting
detailed logs, telemetry data, and video recordings, allowing
users to review test results efficiently.

Introduction

Automated testing with Al has been a rising research fo-
cus more recently with work that has focused on agent-
based approaches that include navigation mesh path-finding
(Shirzadehhajimahmood et al. 2021), reinforcement learn-
ing agents for finding design and environmental de-
fects (Ariyurek, Betin-Can, and Surer 2019; Ferdous et al.
2022), reinforcement learning for load testing (Tufano et al.
2022), modeling of user interaction for boundary test-
ing (Owen, Anton, and Baker 2016), search for test case
generation (Ferdous et al. 2021b), and search for automated
play testing (Ferdous et al. 2021a).

Video game testing, in general, provides a wide range
of challenges. Regression testing, in particular, is crucial
for maintaining the correct functionality of individual game
mechanics throughout the development process. For human
testers, this involves thousands of hours of repetitive work
that is error-prone and costly. Test scripts are a usual way of
automating regression tests, yet the scripts still require a lot
of maintenance throughout the game development process.

As evidenced by Bram Ridder’s (Al Programmer for
Rebellion) keynote talk at the 2021 AIIDE Conference
on “Improved Automated Game Testing Using Domain-
Independent Al Planning” (Ridder 2021) and his 2021 GDC
AT Summit talk “Automated Game Testing Using a Numeric

Domain Independent Al Planner,” planning techniques for
game testing are beginning to be used in the games indus-
try mixed in with calls for more Al automation of test-
ing (Fray 2023). Volokh and Halfond (2023) proposed an
automated approach for determining actions when conduct-
ing automated exploration for games. It is based on program
analysis (slicing) of the game code. Although they are not
using the usual planning formalism (like PDDL), they work
with a symbolic representation of states and actions and rely
on SMT (satisfiability modulo theories) solvers to determine
the set of applicable actions in a given state.

In a nutshell, automated planning formalism (such as
PDDL) provides a useful machinery that can automate
regression game testing and mitigate the need for time-
consuming and costly maintenance. In principle, game me-
chanics can be formulated as lifted actions in the PDDL
model, and the game environment can be abstracted into a
state space represented by predicates and numeric fluents.
Each individual test is then specified by an initial state of
the game (which is often shared for a whole batch of tests)
and a goal that needs to be achieved in the test. The planner
then generates a plan (if it exists) that, in fact, can be treated
similarly to a test script. On top of that, the planning tech-
nology can provide a certain level of robustness to changes
in the game that might disrupt the plan while the test is exe-
cuted by automatically generating a new plan (if possible).

Filuta AI’s Gaming QA Toolchain

Our toolchain is designed in a modular way in order to re-
duce the effort for instrumenting the planning-based auto-
mated testing system into the game. The toolchain supports
Unity and Unreal game engines that are widely used in the
gaming industry and can be customised (with an additional
effort) to custom gaming engines. The main components of
our toolchain are described in the following paragraphs.
The Planning Agent component is responsible for gen-
erating plans, executing these plans, and then reporting the
outcome of their execution (e.g. passed or failed) as well as
telemetry data. The planning agent component requires a do-
main model that captures the mechanics of the game, in the
PDDL language (Ghallab et al. 1998), that has to be engi-
neered by an expert. Notably, a single model can be used for



a (large) class of tests, and for simpler games, a single model
should be able to capture all tested game mechanics. We cur-
rently support STRIPS, conditional effects, quantified pre-
conditions and effects, and numeric fluents. The planning
agent utilizes the Unified Planning framework (Micheli et al.
2025) to interface with state-of-the-art planners to gener-
ate plans. The initial state of the game is obtained directly
from the game (via a middle layer), and test goals, speci-
fied by a user, are obtained from the dashboard. The plan-
ning agent can also work in a random walk mode that allows
for (random) exploration of the scenario (without specify-
ing goals) to find less common bugs that might arise from a
non-standard (but feasible) combination of actions.

The dashboard component provides the main user inter-
face in which human test engineers can specify and evaluate
tests for their games. Through the dashboard, the user can
specify new tests by selecting a domain model and speci-
fying which predicate instances need to be true or false at
the end of the test. When a specified test is executed, the
dashboard monitors the execution and provides information
on which actions in the plan were executed, which action is
currently being executed, and what actions are yet to be ex-
ecuted. After a test is completed, it is either marked as suc-
cessful if all actions were executed and the goal was reached,
or as failed if an issue occurs (e.g. an action cannot be ex-
ecuted). Completed tests can be investigated in more detail
by looking at the reasons for test failure (if any), watching
the in-game video from the test, and exploring a range of
telemetrics (e.g. CPU usage, memory consumption, FPS) ar-
ranged in a timeline of the plan execution (e.g. that a specific
action led to high CPU consumption).

To connect the planning agent to the game, we use the
middle-layer component. The middle layer component can
access the current game data and is responsible for mapping
it to planning states (that are specified via the PDDL model).
Then, the middle layer is responsible for executing the plan-
ning actions (specified in the PDDL model) in the game.
Often, each predicate as well as each lifted action requires
a single block of code in the middle-layer. The practical as-
pect of the middle layer is that it does not require changes in
the game code as well as in the planning agent code, which,
in consequence, makes the instrumentation easier.

Onboarding our Toolchain

When a new game is onboarding for our toolchain, there
are several steps that need to be followed. Initially, it is
important to define a festing scope that, in a nutshell, con-
sists of mechanics of the game that will be tested and types
of goals for regression tests. For example, one might want
to test whether it is possible to build a unit in a strategy
game. Besides building a unit, additional game mechanics
such as building buildings and collecting resources might
be involved (as they are essential for building a unit). Test-
ing scope has to be also defined for manual or script-based
testing and hence we believe that our toolchain does not in-
troduce considerable overheads for this step for game devel-
opers.

The second step involves designing and developing a
planning domain model that captures the game mechanics

specified within the testing scope. It is an iterative process
between game developers and planning experts that refine
the testing scope into a symbolic specification of the states
of the environment and actions. The challenging part in the
domain design is to properly abstract game states into sym-
bolic ones (e.g. by specifying predicates and numeric flu-
ents) and to properly specify actions such that they can be
(correctly) executed in the game and their outcome can be
(correctly) evaluated. This step indeed introduces overheads
for game developers as they need to interact with planning
experts. Arguably, knowledge engineering in planning is still
somehow a “black art” and the effectiveness of the process
relies on planning experts (McCluskey, Vaquero, and Vallati
2017). On the other hand, often a single planning domain
model can handle hundreds of test cases (that are run each
time the game code is updated), and is usually resilient to
a range of smaller changes in the game (e.g. different level
design, new units).

The development of the middle layer can be done by game
developers (with the help of planning experts). It might not
introduce large overheads since the knowledge gathered dur-
ing the design and development of the domain model can be
leveraged in this case.

Regression tests are run frequently, and unless there is
some major change in the game, their setup does not require
maintenance. Although onboarding our toolchain introduces
some overheads, in the long run, the toolchain saves a lot of
manual effort in regression game testing.

Demo Video

The video describing our toolchain can be found at:
https://youtu.be/ViN-Fv56fo4. The video provides an
overview of the features of our toolchain and demonstrates
its functionality on two games: FPS game Lyra (Epic Games
2025), a sample tutorial project developed alongside Unreal
Engine, and RTS game Silica by Bohemia Interactive (Bo-
hemia Interactive 2025), developed on the Unity engine.

Future Work

Our plans for future work involve formal verification of
plan execution that would go beyond our current plan exe-
cution monitoring (e.g., verifying desired behavior of game
mechanics), and integration of other methods (e.g., Monte-
Carlo Tree Search, Reinforcement Learning) that can better
capture game mechanics such as combat.

References

Ariyurek, S.; Betin-Can, A.; and Surer, E. 2019. Automated video
game testing using synthetic and humanlike agents. /EEE Trans-
actions on Games, 13(1): 50-67.

Bohemia Interactive. 2025. Silica Game. https://silicagame.com/.
Accessed: 2025-05-15.

Epic Games. 2025. Lyra Starter Game - Unreal Engine Market-
place. https://www.unrealengine.com/marketplace/learn/lyra. Ac-
cessed: 2025-05-15.

Ferdous, R.; Kifetew, F.; Prandi, D.; Prasetya, 1.; Shirzadehha-
jimahmood, S.; and Susi, A. 2021a. Search-based automated play
testing of computer games: A model-based approach. In Interna-
tional Symposium on Search Based Software Engineering, 56-71.
Springer.



Ferdous, R.; Kifetew, F.; Prandi, D.; Prasetya, I. S. W. B.; Shirzade-
hhajimahmood, S.; and Susi, A. 2021b. Search-Based Automated
Play Testing of Computer Games: A Model-Based Approach. In
Search-Based Software Engineering: 13th International Sympo-
sium, SSBSE 2021, 56-71. Springer-Verlag.

Ferdous, R.; Kifetew, F.; Prandi, D.; and Susi, A. 2022. Towards
Agent-Based Testing of 3D Games Using Reinforcement Learning.
In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 1-8.

Fray, A. 2023. Automated Testing Roundtables GDC 2023. https:
/lautotestingroundtable.com/. (Accessed on 12/12/2023).

Ghallab, M.; Howe, A.; Knoblock, C.; Mcdermott, D.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—The Planning
Domain Definition Language.

McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. Engi-
neering Knowledge for Automated Planning: Towards a Notion of
Quality. In Corcho, O, Janowicz, K.; Rizzo, G.; Tiddi, 1.; and Gar-
ijo, D., eds., Proceedings of the Knowledge Capture Conference,
K-CAP 2017, Austin, TX, USA, December 4-6, 2017, 14:1-14:8.
ACM.

Micheli, A.; Bit-Monnot, A.; Roger, G.; Scala, E.; Valentini, A.;
Framba, L.; Rovetta, A.; Trapasso, A.; Bonassi, L.; Gerevini, A. E.;
Iocchi, L.; Ingrand, F.; Kéckemann, U.; Patrizi, F.; Saetti, A.; Se-
rina, I.; and Stock, S. 2025. Unified Planning: Modeling, manipu-
lating and solving Al planning problems in Python. SoftwareX, 29:
102012.

Owen, V. E.; Anton, G.; and Baker, R. 2016. Modeling user ex-
ploration and boundary testing in digital learning games. In Pro-
ceedings of the 2016 conference on user modeling adaptation and
personalization, 301-302.

Ridder, B. 2021. Improve Automated Game Testing Using Domain
Independent Al Planning - YouTube. https://www.youtube.com/
watch?v=2KXmxuCjjCw. (Accessed on 12/12/2023).

Shirzadehhajimahmood, S.; Prasetya, I.; Dignum, F.; Dastani, M.;
and Keller, G. 2021. Using an agent-based approach for robust
automated testing of computer games. In Proceedings of the 12th
International Workshop on Automating TEST Case Design, Selec-
tion, and Evaluation, 1-8.

Tufano, R.; Scalabrino, S.; Pascarella, L.; Aghajani, E.; Oliveto,
R.; and Bavota, G. 2022. Using reinforcement learning for load
testing of video games. In Proceedings of the 44th International
Conference on Software Engineering, 2303-2314.

Volokh, S.; and Halfond, W. G. 2023. Automatically Defining
Game Action Spaces for Exploration Using Program Analysis.
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 19(1): 145-154.



