Towards Unstructured MAPF: Multi-Quadruped MAPF Demo

Rishi Veerapaneni®, Nikhil Sobanbabu®, Guanya Shi, Jiaoyang Li, Maxim Likhachev

Carnegie Mellon University
{rveerapa, nsobanba, guanyas, jiaoyanl, mlikhach} @andrew.cmu.edu

Abstract

Multi-Agent Path Finding (MAPF) in its most broad per-
spective focuses on finding collision free paths for gen-
eral teams of agents in a shared environment. Theoretically,
MAPF methods could solve a variety of multi-agent prob-
lems. However, MAPF research primarily focuses on simpli-
fied warehouse domains, i.e., gridworld with discrete spaces,
discrete timesteps, and point-mass agents without kinematic
constraints. Thus, the perception of MAPF is tied closely
to gridworld and its assumptions, which limits its attrac-
tiveness to more broad domains. However, there are several
ways to extend MAPF methods past these classical assump-
tions. To this end, our demo shows how MAPF techniques
can be used to plan for a team of quadrupeds. Our system
plans in continuous space, in continuous time, with real-
istic footprints, and incorporates dynamics constraints. See
https://youtu.be/ihVPEsSN58t0 for additional details.

1 Introduction

Multi-Agent Path Finding (MAPF) focuses on finding
collision-free paths for a team of agents in a shared
workspace. The crown applications of MAPF are automated
warehouse robotic systems which contain 100s-1000s of
planar robots that need to transport items between different
locations. Modern MAPF methods are extremely capable
and can plan for 1000s of these agents in seconds. However,
MAPF methods require many simplifying assumptions. In
particular, most MAPF methods require a discretized world,
discretized timesteps, point-mass agents, and no kinematic
constraints. Thus, the perception of MAPF is that it is con-
strained to warehouses and not applicable to other complex
robotics systems with fewer assumptions. To that end, our
demo shows how to use MAPF for a team of quadrupeds. In
particular, we plan in continuous space, continuous time, re-
alistic footprints, and incorporate kinematic constraints for a
team of quadrupeds. We note that we are not the first to relax
these assumptions and that prior work, in particular dB-CBS
(Moldagalieva et al. 2024), does so. Our demo seeks to em-
phasize these advancements with a real-world demo (Fig. 1)
and simulated demo (Fig. 2) with multiple quadrupeds.

“These authors contributed equally.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) 3 Quadrupeds (b) 4 Quadrupeds

Figure 1: Real-world multi-quadruped experiments.

2 Related Works

Classic MAPF Formulation Multi-Agent Path Finding
(MAPF) is the problem of finding collision-free paths for a
group of IV agents, that takes each agent ¢ from its start loca-

tion 53" to its goal location s2°'. In traditional 2D MAPF,
the environment is discretized into grid cells, and time is
broken down into discrete timesteps. Agents are allowed to
move in any cardinal direction or wait in the same cell. A
valid solution is a set of agent paths without vertex colli-
sions (two agents at the same location at the same timestep)
and edge collisions (two agents swapping locations). Thus,
according to this construction, classical MAPF has the fol-
lowing restrictions:(1) Discretized locations, (2) Discretized
timesteps, (3) Point-mass agents, and (4) No dynamics or
kinematic constraints.

Variations on MAPF Assumptions There are several
works that reduce the above assumptions. Large Agents
MAPF (LA-MAPF) focuses on MAPF with agents with
non-point-mass footprints (Li et al. 2019). LA-MAPF
specifically introduces two different constraints in the con-
text of Conflict-Based Search (Sharon et al. 2015). Several
works have focused on MAPF with continuous time with
non-point-mass footprints. Continuous time CBS (CCBS)
(Andreychuk et al. 2019) plans for disk agents in contin-
uous time on a 2¥ connected grid. Discontinuity-Bounded
CBS (dB-CBS) (Moldagalieva et al. 2024) uses CBS with a
combination of heuristic search and optimization solvers to
plan for a set of heterogeneous agents in continuous space,
time, different footprints, and kinematic constraints.
Handling Execution Uncertainty After finding a
collision-free MAPF solution, how do we execute these
plans given that agents are not perfectly modeled and
can have execution imperfections? In particular, there are
two types of imperfections: (1) spatial uncertainty and (2)



;

..
- e
e Il W %

— T
Abstracting Low Level Controller MAPF Solver

— 7
"Real" Execution + TPG

Figure 2: We visualize the pipeline for MAPF with quadrupeds (see Section 3).

temporal uncertainty. We deal with spatial uncertainty by
assuming the agent’s controller has bounded tracking error
and inflating the agent’s footprint during MAPF planning
accordingly. We handle temporal uncertainty by using a
Temporal Planning Graph (TPG) that encodes temporal
dependencies between agents (Honig et al. 2016).

3 MAPF for Multiple Quadrupeds

This section describes the technical details for planning and
running multiple quadrupeds in a planar environment.

Modeling the Quadruped We note that many prior works
that developed effective velocity tracking policies for legged
robots. Thus given a sufficiently performant velocity con-
troller, we can abstract away the quadrupeds 12 DoF leg
joints (4 legs x 3 DoF per joints) but instead only repre-
sent the quadruped with a position (x,y) and a heading 6.
The low-level RL policy enables the quadruped to track a
2D twist command consisting of linear translational velocity
(v, vy), and angular velocity (w,). We incorporate hetero-
geneity in our framework with three different quadrupeds:
Unitree Go2, Anybotics Anymal C, and Boston Dynam-
ics” Spot. However, we noticed that the pre-trained policies
for the Unitree Go2 and Anymal C were poor in tracking
high velocities and high acceleration trajectories. Hence, we
trained custom policies for these two robots with extra regu-
larization rewards and higher velocity command ranges.

MAPF Solver Given a set of start (x, y, 0) positions, goal
(z,y,0) positions, and rectangular footprints, the MAPF
solver need to find collision-free (z,y, ) paths while sat-
isfying the agent’s holonomic kinematic properties. We
use Conflict-Based Search (CBS) with a few modifica-
tions for practicality at the expense of optimality/bounded-
suboptimality or completeness (Sharon et al. 2015). First,
since we want to plan in continuous space and time, we use
a Rapidly-Exploring Random Tree (RRT) single-agent plan-
ner (LaValle and Kuffner 2001). The RRT planner works in
continuous space and time while avoiding obstacles, con-
straints, and incorporating the dynamic constraints. Second,
since our agents have large footprints, we do not have edge
conflicts but only deal with vertex conflicts. Since we work
with continuous space and time, we detect collisions via
a finely discretized collision checker. Third, given a de-
tected collision between two rectangles at (zf,yt, 0%) and
(xh, v, 0%) respectively, we apply a simplified vertex con-
straint. We detect a collision point in the overlap between
the agents and apply a constraint that each agent needs to

avoid overlapping with a spatial square containing the col-
lision point for a time range (i.e., a space-time volume con-
taining the collision point). We note that using this means
that CBS is not complete. Finally, since we are mainly in-
terested in finding feasible paths as opposed to finding min-
imal time paths, we use greedy-CBS which sorts the high-
level queue via (#num conflicts, sum of time) (Barer et al.
2014). Solutions took between 30-300 seconds to compute
based on the number of quadrupeds and congestion.

Simulated Execution Given a collision-free set of paths,
we execute them in Isaac Sim using our trained veloc-
ity tracking RL policies. The MAPF solution is first trans-
formed into a TPG, which encodes the action dependen-
cies across agents. Each quadruped in Isaac Sim follows
this TPG, executing actions in sequence to reach the desig-
nated waypoints. To ensure smooth transitions between way-
points, the trajectory is refined using a Bézier spline. At each
timestep, a proportional controller in the body frame com-
putes the velocity commands for the RL policy based on the
robot’s current position and the next intermediate waypoint
within the spline. Figure 2 illustrates the planning and exe-
cution process of a four-agent system navigating from their
start positions to the corresponding goal locations without
any collisions. We further evaluated our pipeline on maps
with 5-, 8-, and 12-agent systems. The average execution
times observed were 113.32 + 4.79,198.60 + 12.44, and
312.86423.76 seconds, respectively. These results were ob-
tained over three independent trials for each configuration,
with each trial using randomized, heterogeneous agents.

Real-World Execution We also verified this system on
teams of 2-4 Unitree Gols in a real-world physical set-up.
We followed the same pipeline except used an A* single-
agent planner as it produced paths easier to follow than the
RRT, and during execution replaced the Bézier spline refine-
ment with linear interpolation. Obstacles were hand defined
in the 2D occupancy map to match the real-world set-up,
and the quadrupeds were tracked using OptiTrack motion
capture system. Incorporating a TPG was crucial, as differ-
ences in gait and tracking accuracy across quadrupeds often
caused deviations from the nominal path, yet the TPG en-
abled dynamic pausing without requiring online replanning.
Most failures stemmed from hardware issues (e.g., leg mal-
functions) rather than MAPF execution. Future work could
focus on dynamically handling such failures or leveraging
the quadrupeds’ full mobility.



Acknowledgements

The authors thank Shiqi Liu, Yaru Niu, and Professor Ding
Zhao for their critical help in conducting the real-world
quadruped demonstrations, and Yue Zhang for her critical
help in presenting our work at ICAPS.

References

Andreychuk, A.; Yakovlev, K.; Atzmon, D.; and Stern, R.
2019. Multi-Agent Pathfinding with Continuous Time. In
Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI-19, 39-45.

Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Seventh Annual
Symposium on Combinatorial Search.

Honig, W.; Kumar, T. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-agent path finding with
kinematic constraints. In Twenty-Sixth International Confer-
ence on Automated Planning and Scheduling.

LaValle, S. M.; and Kuffner, J. J. 2001. Rapidly-exploring
random trees: Progress and prospects. Algorithmic and com-
putational robotics, 303-307.

Li, J.; Surynek, P.; Felner, A.; Ma, H.; Kumar, T. K. S.;
and Koenig, S. 2019. Multi-Agent Path Finding for Large
Agents. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01): 7627-7634.

Moldagalieva, A.; Ortiz-Haro, J.; Toussaint, M.; and Honig,
W. 2024. db-CBS: Discontinuity-bounded conflict-based
search for multi-robot kinodynamic motion planning. In
2024 IEEE International Conference on Robotics and Au-
tomation (ICRA), 14569-14575. IEEE.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40-66.



