Evaluating Planning Model-Learning Algorithms

Roni Stern,' Leonardo Lamanna,” Argaman Mordoch,' Yarin Benyamin,' Pascal Lauer,’ Brendan
Juba,* Gregor Behnke,” Christian Muise,® Pascal Bercher,” Mauro Vallati,® Kai Xi,” Omar
Wattad,! Omer Eliyahu'

'Ben-Gurion University of the Negev, Israel, 2Fondazione Bruno Kessler, Italy, 3Saarland University, Germany, *Washington
University in St. Louis, USA, 5 University of Amsterdam, Netherlands, 5Queen’s University, Canada, 7 Australian National
University, Australia, ¥University of Huddersfield, UK,
roni.stern@gmail.com, llamanna@fbk.eu, argaman.aloni @ gmail.com, bnyamin @post.bgu.ac.il, lauer @cs.uni-saarland.de,
bjuba@wustl.edu, g.behnke @uva.nl, christian.muise @queensu.ca, Pascal.Bercher @anu.edu.au, m.vallati@hud.ac.uk,
oliver.xi@anu.edu.au, omarwat@post.bgu.ac.il, omer10828 @ gmail.com

Abstract

Formulating domain models for model-based planning is a
challenging, time consuming, and error-prone task. A number
of approaches have been proposed to automatically learn do-
main models from a given set of observations. A key question
is how to compare models learned by different approaches.
Currently, there are no standard evaluation metrics or bench-
marks. In this paper, we describe a set of metrics designed
to assess different characteristics of a learned domain model.
We then present a benchmark suite based on domain mod-
els from the International Planning Competition (IPC) and an
evaluation process for using it. Four domain model learning
algorithms are evaluated on this benchmark, which highlights
the importance of the diverse evaluation metrics we proposed.

Introduction

Domain-independent planning is a foundational area of re-
search in Artificial Intelligence (Al) that focuses on the au-
tomated generation of plans to achieve specific goals from
a given initial state in a given environment. Classical plan-
ning, which is the focus of this work, is the well-studied type
of domain-independent planning in which a single agent is
acting in a fully observable, discrete, and deterministic envi-
ronment. A crucial element of any planning system is the do-
main model, which in classical planning defines how states
are represented, the set of possible actions, and the precon-
ditions and effects of each action. Creating a domain model
is a challenging, time-consuming, and error-prone task (Mc-
Cluskey, Vaquero, and Vallati 2017), which is a bottleneck
for the wider exploitation of planning technology in real-
world applications.

To address this issue, a number of algorithms have been
proposed to automatically learn domain models from a set of
provided observations (Callanan et al. 2022; Aineto, Celor-
rio, and Onaindia 2019; Jiménez et al. 2012).! This task is
often referred to as domain model learning or model acqui-
sition. Despite a recent resurgence in interest in learning do-
main models, there is no set of agreed-upon evaluation met-
rics, no standard evaluation process for such algorithms, and
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no standard benchmark. This can be seen in Table 1, which
lists the different metrics used by prior works. This paper
aims to close this gap, and proposes an evaluation paradigm
for domain model-learning algorithms that includes a set of
metrics, a publicly-available benchmark for evaluation, and
a detailed description of how to use it. A commonly used,
straightforward evaluation process for domain model learn-
ing algorithms is based on comparing the syntactic similarity
of the learned domain model to a reference domain model.
We discuss the limitations of this evaluation method and pro-
pose, as our first contribution, an alternative evaluation pro-
cess that does not require a reference domain model. This
evaluation process aims to evaluate the predictive power and
problem-solving ability of the learned domain model. Sev-
eral specific metrics have been defined for this type of eval-
uation in prior works (Garrido and Gragera 2024; Aineto,
Celorrio, and Onaindia 2019; Juba, Le, and Stern 2021; Mor-
doch et al. 2024; Oswald et al. 2024), and we discuss their
complementary strengths and weaknesses.

The second contribution of this work is an evaluation
framework and benchmark suite based on domains from the
International Planning Competition (IPC). This evaluation
framework implements the evaluation process mentioned
above on the introduced benchmark and outputs the pro-
posed metric. We implemented this evaluation framework
and apply it to evaluate several well-known domain model
learning algorithms, namely Safe Action Model Learning
(SAM) (Juba, Le, and Stern 2021), Offline Learning of Ac-
tion Models (OffLAM) (Lamanna et al. 2025), Noisy Of-
fline Learning of Action Models (NOLAM) (Lamanna and
Serafini 2024), and ROSAME (Xi, Gould, and Thiébaux
2024). Our experimental results provide reference results
to foster future research, as well as empirical evidence
of the necessity for the different domain model evalua-
tion metrics. The code, dataset, and evaluation process de-
scribed in this work are publicly available (https://github.
com/Lamannal.eonardo/AMLGym), and we encourage the
research community to use them for evaluating action model
learning algorithms. Lastly, we briefly discuss how one
may implement a more general evaluation framework that
bridges over differences between how domain model learn-
ing algorithms represent the environment.



Algorithm Syn. | Predict. Pow. | Prob. Solv.
Sim. | App. | Eff. | Solv. | Fail
ARMS (Yang, Wu, and Jiang 2007) v X X X X
SLAF (Amir and Chang 2008)(*) X X X X X
FAMA (Aineto, Celorrio, and Onaindia 2019) v v v X X
LOCM (Cresswell, McCluskey, and West 2013) X (**) (**) X X
OffLAM (Lamanna et al. 2025) v X X v v
NOLAM (Lamanna and Serafini 2024) v X X 4 v
SAM (Juba, Le, and Stern 2021) (F*F) X X X X
Cond-SAM (Mordoch et al. 2024) v X X v X
ROSAME (i, Gould, and Thi¢baux 2024) v X X X X

Table 1: Evaluation metrics used in prior works on domain model
learning. These metrics are defined later in this paper. (*) Only re-
ported runtime results. (**) Measured how many instances were
required to “converge”, i.e., reached where more data is not help-
ful, and whether the domain is isomorphic to a reference domain
model. (¥**) Measured the number of trajectories needed until the
reference domain model is learned.

Background

A classical planning problem is a tuple P = (F, A, so, G),
where I is a finite set of fluents, A is a finite set of actions,
So is the initial state, and G C F'is a set of fluents. A state is
defined by a set of propositions, representing that the fluents
in this set are true in this state and all other fluents are false.
An action a € Ais a tuple a = (pre(a), eff (a)), where
pre(a) is the precondition of a and eff (a) is the effect of a.
The precondition pre(a) specifies the conditions that must
hold in a state for the action a to be applicable. The effect
eff (a) specifies the changes to the state resulting from ap-
plying the action a. The precondition and effect of an action
are defined each as a set of literals, which are either posi-
tive or negative propositions. An action a can be applied in
states that include the positive literals in pre(a) and do not
include the negative literals in pre(a). Applying a in a state
s results in a state s’ that includes all literals the positive lit-
erals in eff(a) and all the literals in s except those appearing
in a negative literal in eff{a). Let L be the set of literals, i.e.,
L=FU{~f|fe€ F}. Asolution to a classical planning
problem is a sequence of actions that transforms the initial
state sp into a goal state s, where G C s4. A solution is
invalid if either some action is not applicable or executing it
does not achieve the goal.

Different algorithms have been proposed for learning
classical planning domain models (Callanan et al. 2022;
Aineto, Celorrio, and Onaindia 2019; Jiménez et al. 2012).
The input to these algorithms is a set of trajectories. A tra-
jectory is a sequence of observations and actions. An ob-
servation can be a state or some other information about
the state, such as a set of predicates that hold in the state
or a visual representation of a state. Domain model learn-
ing algorithms differ in the type of trajectories they learn
from, the type of models they can learn, and the learning
methodology they apply. In this work, we focus on arguably
the most common type of planning domain model learn-
ing algorithms in which the domain model being learned is
a classical planning domain, and the input trajectories are
given in a symbolic representation. Examples of such learn-
ing algorithms include ARMS (Yang, Wu, and Jiang 2007),
which models the learning problem as a MAX-SAT prob-

lem; Simultaneous Learning and Filtering (SLAF) (Amir
and Chang 2008), which applies logical inference to filter
inconsistent action models; FAMA (Aineto, Celorrio, and
Onaindia 2019), which models the learning problem as a
planning problem; and ROSAME (Xi, Gould, and Thiébaux
2024), which uses deep learning. LOCM (Cresswell, Mc-
Cluskey, and West 2013) and SIFT (Gosgens, Jansen, and
Geffner 2024) represent a conceptually different type of do-
main model learning algorithm that rely on action traces,
i.e., sequences of actions, without any knowledge of the un-
derlying states. These algorithms learn a state representation
that is based on the “state” of the objects that can be action
parameters. Thus, it is not clear how can one apply them
to states that were not observed in the training set without
some mapping between an observed state and the internal
representation of it according to LOCM/SIFT. Bridging this
gap is a topic for future research.

Learning a domain model is somewhat related to model
reconciliation (Chakraborti et al. 2017; Sreedharan et al.
2019, inter alia) and model repair (Bercher, Sreedharan, and
Vallati 2025). Model reconciliation is the task of aligning
one model with another model to “explain” the generated
plans. The typically adopted metric is the number of changes
to be made to align the models with the made plan obser-
vations, with the goal of minimizing modifications. Model
repair is the task of modifying an initial model according
to new types of constraints or observations. Domain model
learning can be viewed as an extreme case of model repair
where the initial model is empty. The nature of the repair
task is different, however, and thus metrics and evaluation
for model repair are expected to be different as well.

Problem Setting and Syntactic Similarity

We consider the following domain model learning setup.
An agent is acting in an environment £ that can be repre-
sented as a classical planning domain. The agent’s actions
are recorded in a set of trajectories. The observations and
actions in the trajectories are given in a specific represen-
tation (action and fluent names and parameters), which we
refer to as the input representation. A domain model learn-
ing algorithm is given this set of trajectories, and is expected
to output a domain model for classical planning. That is, this
domain model can be given as input to a classical planner,
and together with an appropriate problem description, the
planner can generate plans with it. The core question we
consider is: How good is the model learned by the domain
model learning algorithm?

Syntactic Similarity Metrics

Many prior works on learning domain models evaluated the
learned model by syntactically comparing it to a reference
domain model (or ground truth model), denoted by M*.
This type of evaluation relies on the assumption that a ref-
erence domain model is available and that it accurately cap-
tures the relevant aspects of the environment. This assump-
tion is reasonable when evaluating domain model learn-
ing algorithms in some controlled environment, e.g., for
research purposes. Under this assumption, several metrics



have been proposed to quantify the syntactic similarity be-
tween the learned domain model and the reference domain
model (Garrido and Gragera 2024; Mordoch et al. 2023; Xi,
Gould, and Thiébaux 2024; Oswald et al. 2024). These syn-
tactic similarity metrics typically compare the intersection or
difference of the literals in the actions’ preconditions and ef-
fects between the learned and reference domain models. We
define these common metrics below. Let M be the evaluated
domain model, a an action, and pre,,(a) the preconditions
of a according to M.

* True Positives: TP, (a) = |(pre,,(a) N prey,-(a)|

* False Positives: FP,.(a) = |((prey;(a) \ prey,-(a)|

* True Negatives: TN,,.(a) = |L\ (pre,,(a) Uprey, . (a))]
* False Negatives: FN,,..(a) = |(pre ;- (a) \ prey;(a))|

The following standard metrics from statistical analysis can
then be computed based on these values for each action:

* Syntactic Precision: P, (a) = #@Pm)

TP(a)

TP(a)+FN(a)

Other metrics, such as Accuracy and Fl-score, can also
be computed based on these values. To obtain an overall
precision and recall for preconditions of the entire domain
model, one can compute the average of the precision and
recall values for all actions: Py, = ﬁ > aca Pla) and
Ruvg = 147 2aea R(a), where P(a) and R(a) are the pre-
cision and recall of action a, respectively. The same metrics
can be defined for the effects of actions, with the only dif-

ference being that the literals in the effects are used instead
of those in the preconditions.

Example 1. Consider an action UNLOAD (Y, t,p), indicat-
ing that the truck t at location | unloads the package p. In the
reference model, its preconditions are at(¢,t) and in(p,t),
and its effects are —in(p, t) and at(¢, p). In the learned model
it has the same effects, but with the preconditions at({, t) and
at(¢,p). Then, its syntactic recall and precision is 1 for the
effects and % for the preconditions.

* Syntactic Recall: R, (a)

A finer-grained variant of the syntactic similarity metric is
to assess the edit distance of the learned domain model from
the reference domain model (Chrpa et al. 2023). Low values
indicate models that are syntactically close to each other. If
two models are syntactically identical (i.e., edit distance of
zero), then they are said to be strongly equivalent.

The syntactic similarity metrics have several limitations,
which have been pointed out by (Garrido and Gragera 2024)
and others. First, they require the existence of a domain ref-
erence model. Such a model is rarely available when apply-
ing automated planning technology in real-world applica-
tions, where a PDDL specification of the environment is not
given. This was also the setup in the International Competi-
tion on Knowledge Engineering for Planning and Schedul-
ing (ICKEPS) (Chrpa et al. 2017). Second, comparing to
a reference model implies there is a single best model for
the environment. What constitutes a best model for an envi-
ronment is not well-defined, and assessing the quality of a
model is very challenging (McCluskey, Vaquero, and Vallati
2017). In fact, one may say that any domain model that is

consistent with the observations is equally likely to be the
“real one”, as the learning algorithm is not given any incen-
tive to prefer one over the other. Lastly, there may be multi-
ple domain models for a given environment that are identical
for all practical purposes, yet different syntactically. Thus, it
is not clear whether the syntactic similarity of the learned
model to a reference model is a good indicator of how use-
ful alearned domain model is. Next, we discuss what consti-
tutes a useful domain model and how to evaluate it without
the need for a reference domain model.

Metrics for Evaluating Domain Models

We consider two main dimensions when evaluating the “use-
fulness” of a learned domain model:

* Predictive power. Aim to assess a domain model’s abil-
ity to predict the applicability of actions in the environ-
ment and the outcomes of applying them.

* Problem-solving ability. Aim to assess a domain
model’s ability of generating invalid plans in the envi-
ronment, within given resource bounds.

These dimensions may not be aligned with the syntactic
similarity metrics, even if there exists a reference model that
enables computing them. For example, if a domain main-
tains logical invariants on its states, such as mutex (mutual
exclusion) conditions, that the reference model does not ex-
plicitly define. The learned model may include these invari-
ants as additional preconditions that only rule out the action
in environment states that are unreachable in actual trajecto-
ries. Similarly, a learned domain model may be very similar
syntactically to a reference domain model but not effective
in solving problems from the corresponding real-world en-
vironment. For example, the learned domain may miss a sin-
gle crucial effect or include an extra precondition that cannot
be met in a key state, which prevents it from solving many
problems correctly. In contrast, a domain model may be very
different from a reference domain model, e.g., adding many
extraneous preconditions to some actions, yet very effective
in solving problems in the application domain since these
extraneous preconditions are often true in the real world.

The two introduced dimensions are also not necessarily
aligned with each other. For example, consider a learned do-
main model that includes many copies of the same action
from the reference domain model, each with different pa-
rameters and preconditions, in order to capture different as-
pects of that action’s behavior. While this may be useful for
predicting the applicability of actions in the environment, it
may hinder the ability of a planner to find plans for prob-
lems in the application domain with this model, due to its
complexity (e.g., large branching factor).

Next, we describe concrete metrics to quantify the useful-
ness of a learned domain model with respect to its predictive
power and problem-solving ability. Computing these metrics
do not require a reference domain model. Thus, they can be
used to compare two models directly. However, computing
these metrics requires that it is possible to attempt to per-
form actions in the environment E' and observe if the action
is applicable as well as the resulting state (if it is).



Predictive Power Metrics

The predictive power metrics, also referred to as seman-
tic domain model metrics (Aineto, Celorrio, and Onaindia
2019; Mordoch et al. 2024; Le, Juba, and Stern 2024), mea-
sure how well a learned model is able to predict the applica-
bility of actions and their effects in the environment.

We define two types of predictive power metrics: action
applicability metrics and predicted effects metrics. The for-
mer measures the ability of the learned model to predict
whether an action is applicable in a given state, while the lat-
ter measures the ability of the learned model to predict the
effects of an applicable action in a given state. Computing
the predictive power metrics requires a dataset of states that
we denote by Sy, This dataset is intended to represent the
distribution of states of interest. Thus, using S,.;; may actu-
ally be beneficial over using all the possible states, as plan-
ning domains can have many ‘“unnatural” states (Grundke,
Roger, and Helmert 2024) which may bias the evaluation.
E.g., in Blockworld we can theoretically define that two
blocks can be on top of each other, i.e., on(a, b) A on(b, a),
but such a state does not make sense. Thus, if the learned
model is inaccurate in such states, it may not be important.
Obtaining a representative S, is a challenge. One way to
do so is by observing an agent acting in the environment,
e.g., operated by an expert.

Predicted applicability For a domain model M and ac-
tion a, we denote by app ;(a, Sies:) and app(a, Sres) the set
of states in Sy, in which a is applicable according to M and
E, respectively. Using this notation, we define the following
predicted applicability metrics as follows for some action a:

* TPupp(a) = |app (@, Stest) N app(a, Sies:)|

° Fpapp(a) = |aPPM (a, SIESI) \app(a, Stest)'

* TNapp(a) = |Sest \ (app s (@, Siest) U app(a, Srest))]

° FNapp(a) = |app(a7 Stesl) \ app yr (CL, Stest)|

In words, TP,,,(a), FPyp(a), TNgy,(a), and FNg,,(a)
are the number of states in S, where a is applicable
in the environment and according to the learned model,
a is not applicable in the environment but is applicable
in the learned model, a is not applicable according to
both environment and learned model, and a is applica-
ble in the environment but inapplicable according to the
learned model, respectively. From these metrics, one can
compute the precision and recall for action applicability
of every action a in the learned model as P,,(a) =

T Py (a) — T Pypp(a)
T Pyy(a)+F Pyp(a) and Rapp(a) T TPyy(a)+FNyyp(a)® respec

tively. When TP,,,(a) = FP,,(a) = 0 it means the
domain model never allowed a to be applied. We define
P,p(a) = 1 and Rgp(a) = 0 in such cases.

Predicted effects For domain M, action a, and state s, we
denote by aps(s) and a(s) the state resulting from applying
a in s according to M and F, respectively. Based on this, we
define the following predicted effect metrics for every state
s € S5 and action a, as follows:

» TPy(s.a) = |(ans(s) \ 5) N (als) \ 9)
» FPys,a) = |(ane(s) \ ) \ als)

* TN(s,a) = |s Nan(s) Na(s)]
* FNeg(s, a) = [(an(s) N5) \ a(s)]

For the purpose of the above computation, a state includes
all the literals true in it, i.e., both positive propositions and
negative ones. Importantly, we consider above only state-
action pairs s and a where a is applicable in s in the envi-
ronment and in the learned model. Otherwise, the outcome
of applying a in s is not defined. To obtain the predicted
effects metrics per action, we simply average over all the
states in Sy. Similar to the predicted applicability metric,
when T'P,y(a) = FPy(a) = 0, we define Pyy(a) = 1 and
Rgﬂ(a) =0.

Aggregated Metrics The above precision and recall met-
rics are computed per action. It is often beneficial to aggre-
gate over all actions and obtain precision and recall metrics
for predicted applicability or predicted effects over the entire
learned domain. One way to do so is to average the precision
and recall obtained for each action. Alternatively, one may
sum the TP, FP, TN, and FN separately, and then compute the
precision and recall. That is, compute precision and recall
based on TP, = > . TPyp(a), FPyp, = >, FPyp(a),
TNypp = >, TNapp(a), and F Ny, = > FNypp(a). We
refer to the result of the first aggregation method as the av-
erage precision and recall of the chosen metric (predicted
applicability or predicted effects). We refer to the result of
the second aggregation method as the cumulative precision
and recall of the chosen metric. Both are reasonable options.
In our evaluation framework described below, we used the
average aggregation method.

Problem-Solving Metrics

Neither the syntactic similarity metrics nor the predictive
power metrics are sufficient for evaluating the operational-
ity (McCluskey, Vaquero, and Vallati 2017) of the learned
domain model, i.e., its ability to solve problems. Even small
syntactical changes in domain models can result in signifi-
cant performance gaps (Vallati and Chrpa 2019; Vallati et al.
2021). We propose two metrics that are designed to measure
a model’s ability to solve problems: solving ratio and false
plan ratio. Both metrics are defined with respect to a set
of problems Il and a planner. The solving ratio metric is
the fraction of problems in Il that can be solved with the
learned model by the given planner within a fixed limit on
the available computational resources — CPU runtime and
memory. We say that a problem is solved if a plan is found
within the allowed computational resources, and that execut-
ing this plan in the environment is possible and achieves the
intended goals. The false-plan-ratio metric is defined as the
fraction of problems in Il that are solved by the learned
model but cannot be executed in the environment or do not
achieve the intended goals. This reflects the reliability of
the learned model for producing plans. Additional problem-
solving metrics can also be considered that quantify the run-
time and solution quality of returned solutions.

The straightforward nature of the above metrics is not
without limitations. The ability to solve a problem with a
given domain depends on external factors such as the set of
test problems, the planner used, the runtime and memory



budget allowed for it to run, and the computer and OS that
executed the planner. Ideally, the above metrics would be run
on a diverse set of test problems, planners, resource limits,
and computing machines. In practice, this might be difficult
to implement, but one is advised to at least run all evalu-
ated domains on the same setup and provide an appropriate
disclaimer to the concluded result.

Benchmarks and an Evaluation Process

Domain JA[TTP[] Types | Const. | A arity Parity | Del. [ Inj.

min | max | min | max | pre. | ass.
barman 12| 15 9 no 2 6 1 2 no | yes
blocksworld | 4 | 5 1 no 1 2 0 2 no | yes
childsnack 6 |13 6 yes 2 4 1 2 no | no
depots 516 9 no 3 4 1 2 no | yes
elevators 6 5 no 3 5 2 2 no | yes
ferry 315 2 no 2 2 0 2 no | yes
floortile 7110 3 no 3 4 1 2 no | yes
goldminer 7|12 1 no 1 2 0 2 | yes | no
grippers 3|4 4 no 3 4 2 3 no | yes
matchingbw | 10 | 10 2 no 2 3 1 2 yes | yes
miconic 416 2 no 2 2 1 2 no | yes
nomystery 316 5 no 3 6 2 3 no | yes
npuzzle 1 3 2 no 3 3 1 2 no | yes
parking 415 2 no 3 3 1 2 no | yes
rovers 9 |25 7 no 2 6 1 3 no | no
satellite 518 4 no 2 4 1 2 | yes | yes
sokoban 2| 4 3 no 3 5 1 3 no | yes
spanner 316 5 no 3 4 1 2 no | yes
tpp 417 7 no 3 7 2 3 no | no
transport 3 5 6 no 3 5 2 2 no | yes

Table 2: Details about the benchmark domains that are relevant to
domain model learning algorithms. Columns from left to right: do-
main name; number of lifted actions, lifted predicates , and types; if
there are constants; the min. and max. arity of the actions; the min.
and max. arity of the predicates; if a literal can be a delete effects
without being a preconditions; and if the injective binding assump-
tion holds ,i.e., whether there is a unique mapping from grounded
action parameters to objects (Juba, Le, and Stern 2021).

As a standard benchmark, we propose to use the set of
20 classical planning domains adopted in all previous IPC
learning tracks. These domains serve as the environment and
as a reference domain model if one wishes to compute the
syntactic similarity metrics. These domains are well known
in the planning community and have available problem gen-
erators. The number of lifted actions, predicates, and object
types in these domains varies in [1, 12], [3, 25], and [1, 9], re-
spectively. See Table 2 for further details about the domains.

Step 1: Creating the training data. The first step in our
evaluation process is to obtain training data T3, i.€., tra-
jectories recording interactions with the environment. In our
evaluation process, we generate these training trajectories
by simulating the behavior of an agent in the environment,
mixing goal-oriented and exploration-oriented behavior, as
follows. First, we generate feasible problems using existing
generators (Seipp, Torralba, and Hoffmann 2022). Then, we
solve every generated problem using a planner with the ref-
erence domain model (from the IPC). The agent then begins
to follow the generated plan, but interleaves a random action
with some probability p,,q. After executing a random ac-
tion, a new plan is computed by the planner from the result-
ing state (using the reference domain model). If the random

action execution leads to an unsolvable state, we backtrack
and perform a different random action.

To generate diverse goal-oriented behavior, we use a
greedy planner configuration for some problems and an op-
timal configuration for others. Let p,,; be the ratio of prob-
lems in which the optimal configuration is used. Specifically,
we adopted the FastDownward planner (Helmert 2006) with
lazy greedy best-first search, the FF heuristic (Hoffmann
and Nebel 2001), and the context-enhanced additive heuris-
tic (Helmert and Geftner 2008) for the greedy configuration,
and A* with LM cut (Karpas and Domshlak 2009) for the
optimal configuration.

To emphasize the importance of using both optimal and
suboptimal planners to generate trajectories, consider the
following example. In the BARMAN domain, an agent can
either CLEAN a previously used shot and then FILL it (which
requires 2 actions), or just REFILL a used shot (which re-
quires only 1 action); while both alternatives are possible in
an heuristic plan, the REFILL action must be executed in an
optimal one. Thus, generating both optimal and suboptimal
plans increases the likelihood of “sampling” more diverse
set of actions. Finally, to produce heterogeneous trajecto-
ries, we also generated trajectories from problems with dif-
ferent numbers of objects of each type.? For our benchmark,
we generated 10 trajectories using the above process with
Drnd = 0.2 and pope = 0.3. The obtained trajectories (T74in)
includes every lifted action at least once, and every trajec-
tory includes between 5 to 45 states and 3 to 107 objects.

Step 2: Running the evaluated learning algorithm.
Next, we run the evaluated domain model learning algo-
rithms with the generated training set 7},,;,, obtaining the
learned domain model M. For completeness, we also com-
pute at this step the syntactic similarity metrics w.r.t the ref-
erence domain from the IPC, despite their inherent limita-
tions, as they are common in the literature.

Step 3: Computing the predictive power metrics. We
create a set of trajectories 7}, similar to how T3, were
created. First we generate problems in the environment and
solve aratio p,,; = 0.3 of them optimally with the reference
domain model and planning configurations used to generate
Tirain- Then, we created trajectories by simulating an agent
that alternates between performing actions in the plan and
random actions with p,,q = 0.2. For our benchmark, we
generated 100 such trajectories. All the states in these trajec-
tories are used as the set of test states (Sy;) for computing
the predictive power metrics.

Step 4: Computing the problem-solving metrics. We
generated 10 problems for every domain and included in
I, the problems FastDownward solved using the greedy
configuration with the reference domain model, within a
time limit of 60 seconds and 16 GB of RAM. The resulting
set of problems is then used to compute the problem-solving
metrics using the same planner with the learned models and
validating the produced plans through the default plans val-
idator provided in Unified Planning (Micheli et al. 2025) .

2 An exception to this is the NPUZZLE domain, where there is a
single object type, and increasing it leads to problems that are too
difficult to be solved.



Syntactic P 1 Syntactic R T
Domain OffLAM SAM ROSAME NOLAM |OffLAM SAM ROSAME NOLAM
barman 095 0.54 084 0.53 1.00 1.00 0.89 1.00
blocksworld| 1.00 0.66 1.00 0.58 1.00 1.00 1.00 1.00
childsnack | 0.97 0.63 0.97 0.66 0.86 0.90 0.86 0.86
depots 098 0.71 0.98 0.67 1.00 1.00 1.00 1.00
elevators 0.81 0.50 0.70 0.36 1.00 1.00 1.00 1.00
ferry 093 0.75 0.93 0.62 1.00 1.00 1.00 1.00
floortile 0.83 041 0.73 0.31 1.00 1.00 0.90 1.00
goldminer 0.80 0.39 0.56 0.36 098 098 081 0.98
grippers 1.00 0.77 097 0.77 1.00 1.00 0097 1.00
matchingbw| 0.95 0.60 0.79 0.54 1.00 1.00 0.78 1.00
miconic 1.00 0.70 1.00 0.56 1.00 1.00 1.00 1.00
nomystery 094 0.66 0.94 0.50 1.00 1.00 1.00 1.00
npuzzle 088 0.70 0.88 0.58 1.00 1.00 1.00 1.00
parking 0.89 0.60 0.87 0.53 1.00 1.00 0381 1.00
rovers 0.83 0.61 0.61 0.51 0.88 088 0.78 0.88
satellite 1.00 075 1.00 0.75 1.00 1.00 0.96 1.00
sokoban 0.88 0.57 0.89 0.48 1.00 1.00 1.00 1.00
spanner 093 071 093 0.60 1.00 1.00 1.00 1.00
tpp 095 029 0.39 0.34 1.00 0.78 0.49 0.89
transport 093 071 093 0.55 1.00 1.00 1.00 1.00

Table 3: Syntactic similarity precision (P) and recall (R).

Experimental Results

We run our evaluation process to four state-of-the-art do-
main model learning algorithms, namely SAM (Juba, Le,
and Stern 2021), OffLAM (Lamanna et al. 2025), NO-
LAM (Lamanna and Serafini 2024), and ROSAME (Xi,
Gould, and Thiébaux 2024). Highlights of the results of our
evaluation are described below. For a more detailed analysis
see the supplementary material. Due to the stochasticity of
ROSAME, we run it with 5 different random seeds and re-
port the average results. All the experiments were run on a
CPU Apple M1 Pro with 16 GB of RAM.

Syntactic similarity. The syntactic precision and recall
of the effects was one for most algorithms and domains. The
syntactic similarity results for preconditions, presented in
Table 3 were more interesting. In all our tables, we high-
lighted in bold the best results in each domain and metric. As
can be seen, in general OffLAM and ROSAME yielded the
best results in terms of syntactic precision while OffLAM,
NOLAM, and SAM provided the best syntactic recall. The
low syntactic precision (< 0.8) of SAM and NOLAM is un-
derstandable as they allow negative preconditions, which are
not needed in any domain, while OffLAM and ROSAME as-
sume such preconditions do not exist. ROSAME’s low syn-
tactic recall in some domains is likely due to its design to
address noisy observations, which we do not currently con-
sider in our training trajectories. ROSAME’s standard devi-
ation for syntactic recall is 0 in half the domains and ranges
from 0.01 to 0.16 in other domains; similarly for other met-
rics, showing ROSAME performance does not significantly
vary across runs. Also worth noting are the CHILDSNACK
results, where SAM outperformed all others in terms of syn-
tactic recall. This is because it is currently the only algorithm
that supports constants, which are used in this domain. SAM
advantage in this domain is evident in most other metrics, for
the same reason.

Predicted applicability. Table 4 shows the predicted ap-
plicability results. As can be seen, despite poor syntactic pre-
condition precision results both SAM and NOLAM provide
almost perfect predicted applicability. This provides empiri-
cal evidence of the syntactic metrics’ drawback: the applica-

Predicted applicability P 1 Predicted applicability R 1
Domain OffLAM SAM ROSAME NOLAM |OffLAM SAM ROSAME NOLAM
barman 1.00 1.00 0.90 1.00 095 092 085 0.92
blocksworld| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
childsnack 0.92 1.00 0.90 0.92 1.00 086 1.00 0.86
depots 1.00 1.00 1.00 1.00 1.00 096 1.00 0.96
elevators 1.00 1.00 1.00 1.00 1.00 0.87 0.60 0.87
ferry 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
floortile 1.00 1.00 0.96 1.00 1.00 093 0.89 0.93
goldminer 1.00 1.00 0.84 1.00 1.00 098 0.82 0.98
grippers 1.00 1.00 0091 1.00 1.00 092 1.00 0.92
matchingbw| 1.00 1.00 0.87 1.00 093 093 0.69 0.93
miconic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nomystery 1.00 1.00 1.00 1.00 1.00 0.67 1.00 0.67
npuzzle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
parking 1.00 1.00 085 1.00 1.00 0.89  0.90 0.89
rovers 1.00 1.00 0.92 1.00 1.00 0.75  0.67 0.77
satellite 1.00 1.00 1.00 1.00 1.00 0.77 1.00 0.77
sokoban 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
spanner 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tpp 1.00 1.00 0.61 1.00 1.00 027 0.65 0.29
transport 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4: Predicted applicability precision (P) and recall (R).

bility of an action is not necessarily affected by the syntactic
precision and recall of its preconditions. For example, in do-
main TPP, the applicability precision achieved by NOLAM
equals 1, despite the preconditions syntactic recall equal to
80%; similarly for SAM in CHILDSNACK, and ROSAME in
BARMAN, DEPOTS and MATCHINGBW.

Predicted effects. Table 5 shows the predicted effects

Predicted effects P 1 Predicted effects R 1
Domain OffLAM SAM ROSAME NOLAM OffLAM SAM ROSAME NOLAM
barman 1.00 1.00 094 1.00 1.00 1.00 0.9 1.00
blocksworld| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
childsnack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
depots 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
elevators 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ferry 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
floortile 1.00 1.00 0098 1.00 1.00 1.00 0.97 1.00
goldminer 1.00 1.00 0.84 1.00 1.00 1.00 0.90 1.00
grippers 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
matchingbw| 1.00 1.00 0.98 1.00 1.00 1.00 0.84 1.00
miconic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nomystery 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
npuzzle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
parking 1.00 1.00 1.00 1.00 1.00 1.00 0.86 1.00
rovers 1.00 1.00 093 1.00 1.00 1.00 0.92 1.00
satellite 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
sokoban 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
spanner 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tpp 1.00 1.00 0.64 1.00 1.00 1.00 0.57 1.00
transport 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5: Predicted effects precision (P) and recall (R).

results. All algorithms except ROSAME achieved perfect
precision and recall across all domains. By design, SAM
and OffLAM provides effects syntactic precision equal to
1, which also holds for NOLAM as the trajectories are not
noisy, since an action effect is learned only when a literal
becomes true/false after observing such action execution in
some trajectory transition. This prevents SAM and OffLAM
from learning unnecessary effects, thus making the false
positives for the predicted effects equal to 0 and the pre-
cision equal to 1. Interestingly, in domain FLOORTILE, TPP,
and MATCHINGBW, the predicted effects precision achieved
by ROSAME equals 1 despite the syntactic precision being
lower than 1 for both positive and negative effects. This is
due to some actions with unnecessary effects (which low-
ers the syntactic precision) and inconsistent preconditions;



Solv. % 1 False % |
Domain OffLAM SAM ROSAME NOLAM | OffLAM SAM ROSAME NOLAM
barman 1.00 0.80 0.04 0.80 0.00 0.00 0.38 0.00
blocksworld| 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
childsnack 0.00 1.00 0.00 0.00 1.00 0.00 1.00 1.00
depots 1.00 1.00 0.80 1.00 0.00 0.00 0.20 0.00
elevators 1.00 0.10 0.10 0.10 0.00 0.00 0.00 0.00
ferry 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
floortile 1.00 0.90 0.02 0.90 0.00 0.00 0.40 0.00
goldminer 0.00 1.00 0.00 1.00 1.00 0.00 0.60 0.00
grippers 1.00 1.00 0.60 1.00 0.00 0.00 0.40 0.00
matchingbw| 1.00 1.00  0.00 1.00 0.00 0.00 0.00 0.00
miconic 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
nomystery 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
npuzzle 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
parking 1.00 090 0.18 0.90 0.00 0.00 0.20 0.00
rovers 1.00 020 0.00 0.30 0.00 0.00 0.04 0.00
satellite 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
sokoban 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
spanner 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
tpp 1.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00
transport 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

Table 6: Problem solving (Solv.%) and false plan ratio (False %).

indeed, actions with inconsistent preconditions are never
executable according to both the environment and learned
model, which prevents such actions to be considered when
measuring the predicted effects metric. Similarly, when an
action has inconsistent preconditions and missing effects,
the predicted effects recall keeps unchanged whereas the ef-
fects syntactic recall is lower than 1. This is the case for
SAM in domain TPP, and ROSAME in domains BARMAN,
FLOORTILE, PARKING and ROVERS.

Problem-solving. OffLAM achieved the highest solving
ratio across all domains except for CHILDSNACK and GOLD-
MINER. Notably, in TPP, it is the only algorithm to produce
a model capable of solving the entire test set of problems.
The difficulty in solving problems for SAM and NOLAM is
mainly due to the learned domains having unnecessary neg-
ative preconditions. As expected, the plans produced with
the domains learned by SAM are never false plans; this is
guaranteed by the SAM safety property (Juba, Le, and Stern
2021). In the CHILDSNACK domain, both OffLAM and NO-
LAM produced inapplicable plans (i.e., the false plans ratio
equals 1) due to a missing precondition involving the un-
supported domain constant. In the GOLDMINER domain, the
plans produced with the models learned by OffLAM are in-
applicable due to a missing negative effect that was never
observed in the input trajectories, which affects the precon-
ditions of subsequent plan actions. Interestingly, SAM and
NOLAM, learned such unobserved negative effect as a neg-
ative precondition, which allows computing valid plans. It is
worth noting that, the SAM solving ratio in domains GOLD-
MINER and CHILDSNACK equals 1 despite the syntactic pre-
cision of 0.39 and 0.63, respectively, and the syntactic re-
call being lower than 1; similarly for NOLAM in domain
GOLDMINER and OffLAM in domain ROVERS. Moreover,
the solving ratio of OffLAM is 0 in domain CHILDSNACK
despite the syntactic precision and recall higher than 0.8, i.e.
0.97 and 0.86, respectively; similarly for ROSAME in 5 out
of 20 domains. These results provide clear evidence of the
syntactic similarity drawbacks previously discussed.

Results summary. Our results indicate that the proposed
metrics allow to capture the strengths of learning algo-
rithms. For example, SAM provides the best applicabil-

ity precision and false plans ratio, while Off LAM achieves
the best applicability recall and solving ratio, and SAM,
OffLAM, and NOLAM provide the same performance in
terms of predicted effects precision and recall. While in
general ROSAME provided weaker results, we emphasize
that ROSAME is designed to handle noisy observations,
while currently in our evaluation framework observations
are noise-free. Moreover, we did not perform any hyper-
parameter tuning, which is often crucial in deep learning
based approach. Hyper-parameter tuning requires a valida-
tion set, and it is unclear how to correctly split the training
set accordingly in our setting.

Discussion

We explored three families of metrics: syntactic similarity,
predictive power, and problem-solving ability. There is an
interesting trade-off between these families of metrics. The
syntactic similarity is the easiest to compute, as it only re-
quires comparing the learned domain with a reference do-
main. However, they require a reference domain model and,
as discussed above, are arguably the least useful. The pre-
dictive power metrics characterize well a desirable property
of a domain model, and are still relatively easy to compute.
The downside of these metrics is that in contrast to clas-
sical machine learning settings, the “data distribution” in
planning is highly non-stationary (not “i.i.d.”): Although the
states in the benchmarks were selected to be representative
of those visited on trajectories collected using the reference
model, this may change. Indeed, the states encountered on
a trajectory generated by a planner using a given learned
domain-model representation depend on the model. Plan-
ners can exploit deficiencies in the learned representation
to systematically visit states that are erroneously modeled,
if those errors make goals easier to achieve. Thus, the pre-
dictive power metrics can be a poor proxy for the utility of
the learned model for planning. The problem-based metrics
fill in this gap, but, of course, they are the hardest to com-
pute as they require running a planner to compute them. One
could devise metrics that are combinations of the proposed
metrics, in an effort to provide a single metric that consid-
ers all the evaluated aspects. We chose not to do this, as any
such combination is somewhat arbitrary without context of
the application where the learned model will be used for.

Conclusion and Future Work

To support the evaluation of model learning approaches, we
proposed a comprehensive evaluation process and a suite of
metrics. Our framework includes three complementary fam-
ilies of metrics: syntactic similarity, predictive power, and
problem-solving ability. We analysed the strengths and limi-
tations of each metric family and how they jointly capture
different aspects of model quality, and we described our
implementation of an evaluation process. Empirical evalu-
ation of four state-of-the-art domain model learning algo-
rithms on our proposed benchmark based on domains from
the IPC learning track reveals that each algorithm exhibits
distinct strengths and weaknesses. The proposed benchmark
and evaluation framework are publicly available, providing a



foundation for systematic and reproducible research in this
area. Future work will focus on extending the benchmarks
and adapting the evaluation metrics to settings involving on-
line or incremental learning (Lamanna et al. 2021; Sreedha-
ran and Katz 2023; Benyamin et al. 2025; Ng and Petrick
2019; Chitnis et al. 2021; Jin et al. 2022; Verma, Karia, and
Srivastava 2023; Karia et al. 2023).
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