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Abstract
The aircraft maintenance routing problem with a maintenance
distribution objective (AMRP-D) considers a set of flight legs
that have to be assigned to a set of available aircraft. While the
start and end time of the flight legs are specified in advance,
the aircraft are required to undergo various maintenance tasks
in the planning horizon. Scheduling these maintenance tasks
as evenly as possible is the objective of the AMRP-D, how-
ever, for most instances it is even difficult to find a feasible
solution covering all maintenance requirements. This paper
presents a new constraint programming model for the stated
problem in order to provide feasible solutions for small in-
stances. The proposed model is tested on the available bench-
mark instances, resulting in more feasible solutions.

Introduction
The aircraft maintenance routing problem (AMRP) is one of
the main optimization problems emerging in the airline in-
dustry. The AMRP deals with a set of flight legs and a set
of aircraft available to operate these flights. In this case, the
start and the end times of the flight legs are already known.
The aircraft are required to carry out these flight legs to-
gether with certain maintenance tasks. The scheduling of the
maintenance tasks has to be done in accordance with regu-
lations imposed on the aircraft. A comprehensive overview
of work in this area can be found in Eltoukhy, Chan, and
Chung (2017), Temucin, Tuzkaya, and Vayvay (2021), and
Xu, Wandelt, and Sun (2023).

A new version of this problem, AMRP-D (AMRP with a
maintenance distribution objective), was introduced by Klet-
zander, Gjergji, and Musliu (2024). The AMRP-D stems
from a real-world application, and it focuses on the even dis-
tribution of the maintenance tasks. This objective enables
the possibility of aircraft schedules with better utilization
of maintenance resources, avoiding both over- and under-
utilization, which in the traditional AMRP are disregarded.

The first solution methods for the AMRP-D were deliv-
ered by Gjergji et al. (2025): a constraint programming (CP)
model and a decomposition approach. The decomposition
approach considers slices of the scheduling period by allo-
cating each flight leg based on its time of occurrence to a
single slice. Then the CP model is used in every slice for the
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assignment of the flight legs to the aircraft. In this manner,
the decomposition approach is able to solve more instances
in comparison to the standalone CP model. Gjergji et al.
(2025) also present a Simulated Annealing (SA) approach
and a Large Neighborhood Search (LNS) to optimize the
objective function of the AMRP-D, where SA provides the
best results. Since obtaining a feasible solution is hard for
this problem, and there are still instances where no feasible
solution has been found, in this paper, we present an alterna-
tive CP model for the provision of feasible solutions for the
AMRP-D. The goal is to investigate if the performance of
the model can be enhanced when consecutive flight legs are
explicitly modeled, replacing optional variables with regular
variables in the process. The model is tested on the avail-
able benchmark instances, where the number of feasible so-
lutions is increased compared to the previous model.

Problem Description
The Aircraft Maintenance Routing Problem (AMRP) is
specified by a set of flight legs, regulations for maintenance,
and a set of aircraft including their recent flight and mainte-
nance history. All times are given as integers.

Flight Legs
A set of n flight legs T = {t1, . . . , tn} is given, each leg
ti is associated with a start time si, an end time ei, and a
flight time fi (with fi < ei − si, as the flight leg contains
both the flight time and the preparation/turnaround times).
As such, flight legs are not allowed to overlap for the same
aircraft, but there is no minimum distance between legs on
the same aircraft. The first m legs in T denote the last leg of
each of the m aircraft from the previous scheduling period
which are fixed to the particular aircraft. Note that in gen-
eral, each flight leg is also associated with a start location
and an end location, defining the routing aspect of the prob-
lem. However, in this paper we deal with a version using
a single home base where outbound and following inbound
flights are fused to one flight leg (with no maintenance at the
destination). Therefore, all locations are equal and omitted.

Maintenance
Aircraft require different types of maintenance. Each main-
tenance type takes a different amount of time to complete.



A maintenance on an aircraft cannot overlap with its other
maintenance or flight legs. Some maintenance types com-
pete for a single hangar. Furthermore, some types are due
periodically (regardless of flight time), while others are due
based on the cumulative flight time. The following types of
maintenance are used in the AMRP-D:
• Regular: An aircraft can fly for at most regl = 47 hours

after the end of the previous regular maintenance, then
it needs regular maintenance taking regd = 2.5 hours
before taking off again.

• Weekly: An aircraft can fly for at most weekl = 156
hours (6.5 days) after the end of the previous weekly
maintenance, then it needs weekly maintenance taking
weekd = 7 hours before taking off again. Weekly main-
tenance includes regular maintenance.

• Major: There are four different types of major main-
tenance. Each of them is independent from the others.
Each follows the same rule regarding time: After at most
majl = 950 hours of cumulative flight time since the last
maintenance of the same type, the aircraft needs major
maintenance taking majd = 14 hours before taking off
again. Each type of major maintenance includes regular
and weekly maintenance. There are further differences
regarding subtypes:
– MH1 and MH2: These require a single hangar, mean-

ing that only one aircraft can perform any of these two
types of maintenance at once.

– MR1 and MR2: These two types do not require the
hangar.

Aircraft
A set of m aircraft A = {a1, . . . , am} is given, each aircraft
aj is preassigned to the history flight leg tj , and is associ-
ated with the time before the start of the planning horizon
that the last regular maintenance ended rj , the time before
the start of the planning horizon that the last weekly main-
tenance ended wj , and the cumulative flight time since each
of the major maintenance types majpkj with k ∈ K and
K = {1, 2, 3, 4}, where 1 and 2 correspond to MH1 and
MH2, while 3 and 4 correspond to MR1 and MR2.

Solution
The legs for j ∈ {1, . . . ,m} are fixed to the corresponding
aircraft. A feasible solution assigns all remaining flight legs
to aircraft, and the required types of maintenance to specific
aircraft and time intervals, such that:
• No overlapping flight legs are assigned to any aircraft.
• No maintenance intervals are violated.
• At most one aircraft is assigned MH1 or MH2 at any point

in time.
The objective of the AMRP-D is to minimize

∑
s m

2
s,

where ms shows the total number of aircraft in any type
of maintenance for each minute s in the planning period.
A second requirement is to schedule the major maintenance
tasks as late as possible, without violating feasibility. How-
ever, these objectives are not part of the stage of the problem
we deal with in this paper.

MiniZinc Model
The decision variables used in the proposed model are as
follows:
• T ′: the set of flight legs excluding the previously as-

signed legs T ′ = T \ {tj | j ∈ A}.
• taili: the aircraft leg i is assigned to.
• allocji: binary variable taking the value 1 if leg i is as-

signed to aircraft j, and 0 otherwise.
• previ: the precedent of leg i on the same aircraft.
• fti: total flight time flown by the aircraft up to leg i.
• mm: maximum number of maintenance tasks that can

be scheduled for any aircraft j. Equation (1) defines the
number mm as:

mm =
maxi(ei)− starth

regl
+ 5 (1)

• msjl: the start time of the lth maintenance for aircraft j.
• mtjl: the type of the lth maintenance for aircraft j, where
0 is a dummy maintenance, 1 is a regular maintenance, 2
is a weekly maintenance, and {3, 4, 5, 6} are major main-
tenance tasks in the order MH1, MH2, MR1, and MR2.

• mdjl: the duration of the lth maintenance for aircraft j.
• majsjk: the start of major maintenance k for aircraft j.
• majhjk: binary variable taking the value 1 if major

maintenance k happens for aircraft j, and 0 otherwise.
• majcjk: the index of the maintenance for aircraft j

where major maintenance k is scheduled.
One of the main differences with the previous model by

Gjergji et al. (2025) is the exclusion of optional variables,
which in the earlier model covered both the selection of
flight legs for aircraft and the start of maintenance tasks for
aircraft. In the new model, the decision variables for the as-
signment of flight legs to the aircraft are expressed with the
regular variable tail, which represents the aircraft operating
each flight leg. For the start of maintenance tasks ms we use
the same maximum number mm. However, we use dummy
values for maintenance tasks that are not necessary in the
scheduling period.

The mathematical model for the AMRP-D is displayed in
Figure 1. Equation (2) assigns the previous history legs to
their respective aircraft. Equation (3) denotes the first main-
tenance task to be the weekly history maintenance that it is
completed at wj . Equation (4) sets as a second maintenance
task the regular maintenance from the history if it does not
end at the same time as the weekly maintenance. Equation
(5) calculates the total flight time for the legs, where the
flight legs from the history account only for their flight time
while the other flight legs also need the total flight of their
precedent (prev) flight leg on the same aircraft. Equation (6)
enforces that non-history flight legs should have a different
prev leg. Using the prev variable is helpful for keeping track
of the total flight time for each aircraft in order to schedule
major maintenance tasks that are requested based on the ac-
cumulated flight time. Equation (7) guarantees that no flight
legs are assigned to aircraft without undergoing major main-
tenance if their total flight time together with the cumulative



tailtj = j, j ∈ A, (2)
msj1 = wj − weekd ∧mtj1 = 2, j ∈ A (3)

msj2 = rj − regd ∧mtj2 = 1, j ∈ A, rj ̸= wj (4){
taili = tailprevi ∧ fti = ftprevi + fi if i ∈ T ′

previ = i ∧ fti = fi otherwise
, i ∈ T (5)

alldifferent([previ|i ∈ T ′] (6)
fti +majpk taili > majl → si ≥ majstaili k +majd, i ∈ T, k ∈ K (7)

allocji ↔ taili = j, j ∈ A, i ∈ T (8)

disj([si | i ∈ T ] + + msj , [(ei − si) · allocji | i ∈ T ] + + mdj), j ∈ A (9)
taili = j → ∃l∈1..mmmsjl < si ∧mtjl ̸= 0 ∧msjl +mdjl + regl ≥ ei, j ∈ A, i ∈ T ′ (10)

taili = j → ∃l∈1..mmmsjl < si ∧mtjl ̸= 0 ∧mtjl ̸= 1 ∧msjl +mdjl + weekl ≥ ei, j ∈ A, i ∈ T ′ (11)
majhjk = 0 ↔ majsjk = max(ei), j ∈ A, k ∈ K (12)
md = [mdxmtjl | j ∈ A, l ∈ 1..mm], (13)

disj(majsj , [majd ·majhjk | k ∈ K]), j ∈ A (14)

disj(majs1 ++ majs2, [majd ·majhj1 | j ∈ A] + + [majd ·majhj2 | j ∈ A]), (15)
mtjl = 0 → mtj,l+1 = 0, j ∈ A, l ∈ 1..mm− 1 (16)

mtjl = 0 → msjl = max(ei), j ∈ A, l ∈ 1..mm (17){
mtj majcjk = k + 2 ∧msj majcjk = majsjk if majhjk = 1

majcjk = mm+ 1 otherwise
, j ∈ A, k ∈ K (18)

mtjl − 2 in K → majcj mtjl−2 = l, j ∈ A, l ∈ 1..mm (19)
increasing(msj), j ∈ A (20)

Figure 1: Model of AMRP-D. Concatenation of sequences is shown with ++, disjunctive constraints are indicated with disj,
rows and columns in matrices are illustrated as msj .

flight time from the history exceeds the major limit. This is
another distinction from the previous model (Gjergji et al.
2025). Equation (8) makes sure that allocji holds for each
leg and its assigned aircraft. Then alloc is used in Equation
(9) for the disjunctive constraint to prohibit overlapping of
flight legs and maintenance tasks for all aircraft. In the ear-
lier approach (Gjergji et al. 2025), only the assigned optional
variables were used for the disjunctive constraint as the con-
straints would hold for non-occurring assignments. Equation
(10) enforces that for each aircraft maintenance tasks are
scheduled in line with the regular maintenance limit (exclud-
ing dummy maintenance). Equation (11) follows the same
rule for weekly maintenance limit, however regular mainte-
nance tasks are not taken into account. Equation (12) places
the major maintenance tasks that do not happen at the end
of the scheduling period. Equation (13) specifies the main-
tenance duration depending the maintenance type mt using
mdx that is set to 0 for dummy, regd for regular, weekd
for weekly and majd for major maintenance tasks. Equa-
tion (14) forces all major maintenance tasks to be different
for every aircraft. Equation (15) ensures that the hangar con-
straint is not violated by using the disjunctive constraint for
the MH1 and MH2 major maintenance tasks scheduled for all
aircraft. Equation (16) lists the dummy maintenance tasks at
the end and Equation (17) assigns the end of the schedul-

ing period as start time for the dummy tasks. Equation (18)
ensures that happening major maintenance are included in
the start maintenance tasks variable ms start. For simplicity,
non-occurring maintenance tasks are allocated at the mm+1
maintenance slot. In the model by Gjergji et al. (2025), the
major maintenance tasks majs were mapped into the main-
tenance start ms utilizing the exists quantifier to ensure the
maintenance slot. In our approach, we use majc to allocate
a maintenance slot to major maintenance that are scheduled.
Equation (19) guarantees that the type of the major mainte-
nance task is in accordance with its allocated maintenance
slot. Lastly, Equation (20) enforces an increasing order for
the start times of the maintenance tasks for each aircraft (du-
plicates are allowed due to the dummy maintenance tasks).

Experimental Evaluation
The experiments for both models were done on a comput-
ing cluster, equipped with two Intel Xeon E5-2650v4 @
2.20 CPUs with 12 cores. CP-SAT 9.14 is used for solving
the CP models as satisfaction problems (no objective func-
tion) which were modeled in MiniZinc (Nethercote et al.
2007). The runs of each model were executed in 8 threads
using a time budget of 7200 seconds for available bench-
mark instances (Kletzander, Gjergji, and Musliu 2024). The
instances for the AMRP-D are designed based on a prac-
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Figure 2: Number of solved instances based on instance size
for CP1 and CP2.

tical application considering a single hub, flight legs with
medium to long distance, daily departure peaks, and sea-
sonal fluctuations. The scheduling period is 7, 14, or 28
days. Regarding the density of the flight legs to be assigned,
instances have uniform density, downsloping density with
demand that decreases in the scheduling period, or upslop-
ing density with increasing number of flight legs during the
scheduling period. The number of flight legs varies from 70
to 1695, the number of aircraft is 10, 20, or 50. Different
combinations of these characteristics result in 324 instances
altogether.

Feasibility Results
The model presented by Gjergji et al. (2025) is denoted
as CP1 and the model proposed in this paper is shown as
CP2. Out of 324 instances in total, CP1 solves 96 instances,
while CP2 solves 106 instances. In Figure 2, the results of
both models are compared based on the number of aircraft.
CP2 performs better for instances with 10 aircraft. For in-
stances with 20 aircraft the performance is similar (only 1
more instance solved by CP2). On the other hand, CP2 does
not solve any instance with 50 aircraft. The results of the
two models depending on the density of the instances are
displayed in Figure 3. For instances with uniform density
both models have the same performance. For instances with
downsloping and upsloping density CP2 has a better per-
formance. Runtime results for instances which at least one
model did not time out are given in Figure 4, where CP1
is shown on x-axis and CP2 on the y-axis. CP2 offers the
lowest runtime for 127 instances, CP1 is faster for 35 in-
stances, and both models have the same runtime for only
1 instance. Further analysis on the statistics outputted by
FlatZinc shows that both the number of variables and the
number of constraints is much lower for CP2 compared to
CP1. Such findings support the results of CP2 being faster
on most instances, as well as solving more instances.

Discussion and Conclusion
In this paper we presented an alternative constraint program-
ming model for the aircraft maintenance routing problem
with a distribution objective. This study is motivated by the
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Figure 3: Number of solved instances based on instance
structure for CP1 and CP2.
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Figure 4: Comparison of CP1 & CP2 in terms of runtime.
Logarithmic scale has been applied to the actual runtime val-
ues as they range from seconds to the timeout limit.

question whether providing a different way of modeling con-
secutive flight legs and substituting optional variables with
regular variables could lead to better results. Specifically, the
new model employs a regular variable for maintenance tasks
and uses dummy variables to cover the maintenance tasks
that are not required in the scheduling period. Furthermore,
the assignment of the flight legs is done with a regular vari-
able indicating the aircraft operating each leg, and an explicit
variable for the previous leg. This results is a much lower
number of variables and constraints in the flattened model,
which ultimately contributes to a higher number of feasi-
ble solutions and faster runtime, in particular for smaller in-
stances and changing demand density. Many aspects could
be considered for further refining the model: reformulating
the complex constraints in Equation (10) and (11), deriv-
ing a tighter bound for the maximum number of mainte-
nance tasks mm in the scheduling period, and integrating the
proposed CP model in the decomposition approach (Gjergji
et al. 2025).
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