Learning Action Models from Partially Ordered Action Traces

Chunjie Liu' and Patrik Haslum'

! Australian National University
Canberra, Australia
{firstname.lastname } @anu.edu.au

Abstract

Learning action models is a fundamental task in the field of
automated planning. In many realistic settings, available data
is incomplete or only partially observable, making the learn-
ing problem even harder. This paper addresses learning ac-
tion models from partially ordered action traces, in which
the order of actions is only partially observed. We introduce
POLOCM, a novel method that extends the LOCM?2 algo-
rithm with a Binary Integer Programming formulation to re-
cover missing order information from partially ordered action
traces. Experiment results show that this is effective in over-
coming the additional challenge due to missing order infor-
mation, while the overall model quality remains constrained
by LOCM?2’s inherent limitations.

Introduction

In Artificial Intelligence (AI), planning involves generating
sequences of actions, that guide the system from an initial
state to a specified goal. To create these action sequences, Al
planners depend on action models — formal descriptions of
actions in terms of their preconditions and effects, typically
specified in declarative planning languages like the Planning
Domain Definition Language (PDDL) (McDermott et al.
1998). However, manually constructing these models re-
quires time and domain expertise.

A way to address this challenge is to automate action
model acquisition, that is, to learn the action model from
observations of plans or plan executions. The majority of
current approaches depend on observation of both actions
and corresponding (partial) state information to infer action
preconditions and effects (Arora et al. 2018). In many po-
tential applications, however, only actions, or events, can be
observed. Examples include business process mining (van
der Aalst 2013), temporal databases (Boselli et al. 2014),
diagnosis of discrete-event systems (Cordier and Thiébaux
1994; Mcllraith 1994) and narrative understanding (Lindsay
et al. 2017; Li et al. 2024). Many realistic settings also fea-
ture incomplete or noisy observations, such as imperfect ob-
servation of the order of events (Haslum and Grastien 2011;
Olmo, Sreedharan, and Kambhampati 2021; Li, Haslum, and
Cui 2023) or missing or incorrect action arguments (Boselli
et al. 2014; Li et al. 2024).

Recent advances in planning model learning have ad-
dressed settings in which state, and in a few cases also ac-

tion, observations are incomplete or noisy (Aineto, Celorrio,
and Onaindia 2019; Zhuo and Kambhampati 2013; Zhuo,
Peng, and Kambhampati 2019; Grand, Pellier, and Fior-
ino 2022). However, to the best of our knowledge, only
the LOCM/LOCM?2 (Cresswell, McCluskey, and West 2009,
2013; Cresswell and Gregory 2011) and the recently pro-
posed SIFT (Gosgens, Jansen, and Geffner 2024) algorithms
are able to learn planning models from observation of ac-
tion traces only, without requiring any state information, and
these algorithms all depend on observing the complete and
total order of the action sequence. This can be a significant
limitation to their applicability: For example, in one of the
two discrete-event diagnosis benchmark domains presented
by Haslum and Grastien (2011), the average flex value' of
the partially ordered observations is 0.23. Li et al. (2023)
after extracting events and their order from narrative text,
report “on average, [...] 2.7 subnetworks per document, with
an average size of 22 events”, implying average flex values
in excess of 0.5.

To bridge this gap, we present POLOCM, which extends
the LOCM/LOCM? algorithms to learn action models from
action traces where the order of actions is only partially ob-
served. We mean by this that although the executed plan is
a sequence, we may not have observed the exact order of
all actions in the sequence. It is not the same as assuming
that actions whose order is not observed occur in parallel,
or that any ordering of them results in a valid plan. In prin-
ciple, POLOCM can be applied even if the input is a set
of completely unordered action instances, but in this case
learned model will be one, arbitrary, out of many consis-
tent models. In practice, we show that POLOCM can learn
a model that is nearly as accurate as what would have been
learned from observing the completely ordered action traces
for moderate flex values (up to around 0.6). In this paper, we
assume that all actions in the plan, and their arguments, are
known; only the information about their order is partial. We
also assume that any ordering information that is observed
is correct. Learning from partial observation of the actions
themselves, including their arguments, has been addressed
in prior work (Gregory, Lindsay, and Porteous 2017), and

'Flex is a commonly used measure of the degree of ordering
in a partially ordered set. It ranges between 0 and 1, where a total
order has a flex value of 0 and an unordered set a flex value of 1. It
is formally defined in the “Background” section later in the paper.

integrating both types of incompleteness is straightforward.

The key principle of learning from action traces alone is
to find a model that admits the observed action traces, which
are known to be valid, and minimises the set of unobserved
action sequences admitted by the model?. This corresponds
to the principle of maximum likelihood estimation. We ex-
tend this principle to the resolution of unobserved ordering
of actions in the input traces.

LOCM and LOCM? identify pairs of consecutive transi-
tions for each object type, or sort, from the ordered action
traces, and use these to construct action models. This prop-
erty of the algorithms allows us to concentrate on finding
a minimal set of consecutive transition pairs for each sort
that is sufficient to explain the partially ordered action traces,
thus maximizing the fit between the resulting action model
and the observations. POLOCM solves a Binary Integer Pro-
gram (BIP) to produce a minimal transition matrix for each
sort, which serve as input for LOCM/LOCM?2 to construct
action models in PDDL format.

We evaluate the approach experimentally on multiple
benchmark domains, demonstrating that in a majority of in-
stances, POLOCM is able to recover an action model from
partial-order action traces that is as good as the model ob-
tained by LOCM?2 on the corresponding totally ordered ac-
tion traces, even in some cases with a very high degree of
missing order information.

Related Work

SIFT (Gosgens, Jansen, and Geftner 2024) is the only ap-
proach outside the LOCM family that learns action models
solely from action traces. It employs a feature-based learn-
ing framework to systematically extract domain predicates
and action schemas by analyzing the effects of actions on
predicate patterns. Compared to LOCM and LOCM?2, SIFT
is able to identify predicates of any arity, and offers a form of
guarantee of completeness in the limit of sufficient training
examples. It relies, however, on the observed action traces
being totally ordered.

LC_M (Gregory, Lindsay, and Porteous 2017) is closely
related to our work, as both approaches build upon the
LOCM algorithms and rely solely on action traces. LC_.M
learns action models from traces with partially observed ac-
tions that may contain noisy or missing arguments. How-
ever, it still assumes that the actions are totally ordered,
which makes its problem setting different from ours. LC_-M
splits input plans into smaller, complete fragments and re-
constructs missing parts using constraints. Noisy data is
identified through transition matrices and state parameter
consistency checks, followed by hypothesis testing to cor-
rect errors. While LC_M uses a constraint-based approach
to infer missing information and correct errors in action se-
quences, our method integrates constraints to reconstruct the

2LOCM and LOCM? both aim to construct a model that min-
imises admitted unobserved action sequences, though neither offers
any guarantee that the model is minimal in this respect. The SIFT
algorithm, we believe, achieves minimality in the limit of increas-
ing observations. A variant LOCM-like algorithm achieves mini-
mality for a restricted class of domains.

ordering between actions.

Unlike POLOCM and LC_M, which learn solely from
action traces, other action models learning approaches that
handle incompleteness and noise rely on some state observa-
tions: Lamanna et al. (2025) introduce an approach for learn-
ing minimal action models from partially observed state and
action traces, similar in spirit to POLOCM, by minimizing
the number of transitions required to explain the observed
data. It iteratively applies a sound and complete set of com-
pletion rules to derive all minimal models which contain
only the necessary effects to explain observed state changes.

AMLSI (Grand, Pellier, and Fiorino 2022) uses grammar
induction and supervised learning. It requires as input both
valid and invalid action sequences, which are generated via
random walks and labeled based on partial and noisy state
observations, or marked as “failure” when execution is not
possible. While AMLSI, like POLOCM, also employs finite
state machines to model state transitions, it requires input
actions to be labeled as valid or invalid. IRALe (Rodrigues,
Gérard, and Rouveirol 2010) also uses randomly generated
action traces but focuses on complete but noisy state obser-
vations. It employs an online active learning algorithm that
iteratively explores and refines the action model.

The ALICE framework (Mourdao et al. 2012) learns
STRIPS action models from partially observed and noisy
state data by using classifiers to predict action effects and
then deriving STRIPS rules. It observes actions failing
(due to unsatisfied preconditions). NOLAM (Lamanna and
Serafini 2024) also addresses noisy sensor-observed state—
action traces, using a probabilistic graphical model to infer
action preconditions and effects.

AMAN (Zhuo and Kambhampati 2013) is another graph-
ical model-based approach for learning action models from
noisy state—action traces, assuming each action has a chance
of being noisy. It uses a policy-gradient method to predict
correct traces, updates the domain model based on a re-
ward function, and iteratively refines the predictions and
model. AMDN (Zhuo, Peng, and Kambhampati 2019) ex-
tends it by also addressing disordered traces. It constructs
constraints related to action disorder, parallelism, and noise,
which are solved using a MAX-SAT framework to generate
action models.

Le, Juba, and Stern (2024) propose two algorithms PI-
SAM and EPI-SAM for learning action models from par-
tially observed trajectories, in which actions are fully ob-
served but states are partial. Both algorithms learn safe ac-
tion models, meaning any plan generated from the learned
model is guaranteed to execute successfully and achieve its
intended goals.

Background
STRIPS

STRIPS (STanford Research Institute Problem Solver) is
a widely-used action representation formalism in classical
planning (Fikes and Nilsson 1971). We follow it to define
actions as tuples {(a, pre, add, del), where:

¢ Action name a: The name of the action with zero to more
parameter.

* Preconditions pre(a): A set of predicates that must hold
true for the action a to be applicable.

* Add effects add(a): The set of predicates that become
true after the action is applied.

* Delete effects del(a): The set of predicates that become
false after the action is applied.

Given a state st, an action a can be applied if all precon-
ditions pre(a) are satisfied in st. The resulting state st’ is
derived by updating st according to the effects of a: adding
the predicates in add(a) and removing those in del(a).

The LOCM?2 Algorithm

The LOCM?2 algorithm learns action models from observa-

tion of only action traces, without requiring any state obser-

vations or background knowledge. The following summary

of the algorithm is necessarily very brief; for a complete de-

scription, we refer to the original presentations (Cresswell,

McCluskey, and West 2013; Cresswell and Gregory 2011).
Given an action trace of length /V,

[ai(oi,l, ~~~Oi,r[ai])a 1€ [17NH

a; is the ith action’s name, r[a,] its arity, and 0,1, ...0; y[q,]
its argument objects. We say that the ith action contains an
object 0 (0 € O,,) if 0 € {041, ...0; y[;) }. LOCM2 assumes
the set of objects is partitioned into disjoint subsets, called
sorts. Objects of the same sort (i.e., type) have the same
behavior, meaning they undergo identical state transitions in
response to the same actions, we use o € O to denote object
o belongs to sort s. Action arities and parameter types are
assumed to be consistent across traces, that is, if a; = a;,
then r[a;] = rla;], and for each [€ [1,r[a;]], objects o,
and o;,; belong to the same sort. The sorts of objects in a
given action trace can be inferred from this: two objects that
appear in the same argument position of different instances
of an action have the same sort. We use Oy and Sy to denote
the universe of objects and sorts, respectively.
We will call a.k an object event (or event), for an action
a and k € [1, r[a]]. It represents the event that occurs to the
k" object in the execution of a.
Two actions a; and a; in an action trace are consecutive
with respect to object o € Oy iff:
e 1< j
* Both actions have o as a common parameter, that is, 0 =
0i) = 0j, for some k € [1,r[a;]],1 € [1,7]a;]]
* There is no action a,, such thati < p < jando € O,,.

The corresponding events a;.k and a;.l are called consec-
utive events. For each sort s, LOCM?2 collects all consec-
utive events of the sort in a transition matrix 7%, where
T = 11if a;.k and a;.l are consecutive. It then con-
structs one or more finite state machines (FSMs) for each
sort, representing the state and transitions of objects of the
sort: For any two events a;.k and a;.[that are consecutive,
the end state of a;.k is unified with the start state of a;.l, i.e.
end(a;.k) = start(a;.l). The FSM states are then param-
eterized by checking if all consecutive transitions through
a state share another common argument. This process may

overgeneralize, i.e., the created FSM may accept event se-
quences that are not present in the observed action traces.
To address this, LOCM?2 searches for subsets of the events
of a sort such that an FSM constructed over the subset cov-
ers “holes” in the matrix — gaps that would otherwise lead
the FSM to overgeneralize. Each FSM created from a sub-
set of events must be validated against all observed event
sequences for the sort. The resulting set of FSMs represent
how objects of the sort behave over time, where states cap-
ture preconditions and effects, and transitions represent ac-
tions that move objects between these states.

A STRIPS domain is created from the set of FSMs by
representing each state of each FSM as a predicate, with
a parameter for the object sort and additional parameters
for any parameters of the state. Preconditions of action a
are start,,(a.k)(xg,...), where xy is the kth parameter
of a, for each FSM m of the sort of x; that the event
causes a transition in. The effects —start,,(a.k)(zg, .. .)
and end,, (a.k)(z, ...) are added to a if start,,(a.k) #
end,, (a.k).

Note that although LOCM2 was presented as learning
from action traces, it does in fact not require the sequence
of actions to be completely known: it requires only the sort
transition matrix, for each sort, and the pairs of actions that
are consecutive with respect to some objects. We make use
of this property of the algorithm, by reconstructing from a
partially ordered action trace only the required inputs, with-
out needing the reconstruct a total ordering of all actions.

Partial-Order Action Trace

A partial-order action trace (POAT) is a tuple (A, C), where
A is the set of action instances in the trace and C is the set of
ordering constraints between action instances in 4. We as-
sume that each action instance in .4 is uniquely identifiable
(e.g., by the distinct superscript in Example 1). For actions
a1,as € A, an ordering constraint, written a; < as € C,
indicates that action a; happens before action as. If a1 < a9
or as < aj, we say that a; and ay are comparable. The set
of ordering constraints C can also be represented as an ad-
jacency matrix /, where

1 ifa; <a; ..
Iij{ 0 ifai%a; V%JG[L‘A”

Note that a; & a; means either a; < a;, or a; and a; are not
ordered.

Definition 1 A POAT{A,C) is strict if all a;,as,a3 € A
satisfy the following:

o Transitivity: (a1 < a2) A (ag < az) = a1 < as

* Asymmetry: a1 < az => a2 A a1

o Irreflexivity: a1 4 aq
These properties can be enforced on the adjacency matrix
fori,j,x € [1,|Al], i # j, © # 14,] as follows:

e Transitivity: I;; + Ij, < Iy + 1

o Asymmetry: I;; +1; <1

o Irreflexivity: I;; = 0
Example 1 Consider the following partial-order action
trace:

do' (o1, 09) —— undo®(oy) do*(01,03)
~ ™~
get5 (02) get® (0s)
(The superscript is a unique identifier for each action in-
stance.) We have Oy = {01,02,03}, and we can infer
that oo and o3 are of the same sort, so there are two sorts
s1 = {01}, s2 = {02, 03}. The set of ordering constraints is
C = {do' < undo? do' < get®,undo* < get3}, and the
corresponding adjacency matrix is

I do' | undo?® | get® | do* | get®
do? 0 1 1 ? 1
undo®> | 0 0 1 ? ?
get3 0 0 0 ? ?
do* ? ? ? 0 ?
get® 0 ? ? ? 0

(Entries in bold are given in C; remaining values are derived
from partial-order properties. ? stands for unknown values.)

A partial-order object trace (POOT) is a tuple (T7°,C°),
where 77 is a set of events on object o, and C? is the set
of ordering constraints between events in 7°. C° can also
be represented as an adjacency matrix P° € {0, 1}, where
P = 1means e; < ej,and P{; = 0 means e; A e;. A strict
POOT satisfies the same properties as a strict POAT.

Given a POAT (A,C) and an object o such that o € O,
for some a € A, (T°,C°) is uniquely determined (up to re-
naming). We assume 7 ° and A4 are indexed by i € [1,|7°|]
and j € [1,|A]], respectively, and define the mapping ¢° :
T° — Asuch that $°(i) = j when e; = a;.k and 0 = 0, ..

Example 2 The adjacency matrices of the POOTs for each
of the three objects in the trace from Example 1 are:

peor do'.1 | undo®.1 | do*.1
do*.1 0 1 ?
undo?.1 0 0 ?
do*.1 ? ? 0
P2 do'.2 | get®.1 P get3.1 | do*.2
do'.2 0 1 get3.1 0 ?
get®.1 0 0 do*.2 ?

From the definition of consecutive events, we have:

Lemma 1 Given the adjacency matrix I of a POAT(A,C),
and P° of a POOT(T?°,C°), o € Oy, then for any i,j €
(LM P = Lyeirge i)
This states that for any two actions a; and a; that have a
shared object o, if a; precedes a;, then for the two events
ey = a;.k and ejr = a;.l, such that o = 0; 1, = 05, ey also
precedes e;.

Finally, we will use the flex measure of a partial order
to quantify the degree of ordering. It is defined as follows
(Muise, Beck, and Mcllraith 2016):

Definition 2 Given a POAT (A, C),
Ic*]

o A—1
S

flex((A,C)) =1

where |CT| denotes the number of comparable action pairs
(i.e. the sum of the I matrix), and Zléfl‘
of possible action pairs over the trace.

is the total number

Given this definition, a fully unordered trace will have a
flex value of 1, while a totally ordered trace will have a
flex value of 0. The flex of the POAT in Example 1 is 0.6.

POLOCM

POLOCM extends the LOCM and LOCM?2 algorithms to
work on partial-order input, exploiting the property of the
algorithm that only an ordering of events on each object in
the trace is needed, not a total ordering of all actions. As
shown in Example 2, even a loosely ordered action trace can
impose a nearly total order of the events that affect each ob-
ject, but this is of course not guaranteed. A simple approach
to dealing with the remaining partial order is to assume that
every possible ordering of the observed actions, i.e., every
linearisation of the partially ordered input traces, is a valid
action sequence. (We use this simple approach as a baseline
for comparison with POLOCM in the experimental evalua-
tion later in the paper.) This, however, is likely to result in a
domain model that is much more permissive than required,
i.e., that is likely to admit many more action sequences that
are in fact not valid. Because our aim is to find a domain
model that explains the observed partially ordered action
traces and admits a minimal set of unobserved traces, we in-
stead resolve the remaining order uncertainty so that the to-
tal number of consecutive event pairs (or transitions), across
all sorts, is minimised. The intuition behind this choice is
to maximize the fit between the domain model and the ob-
servations, under the fundamental assumption that different
objects of the same sort behave the same way.

In Example 2, events do.2 and get.1 on object o3 are un-
ordered, so both pairings of the events could be consecutive.
However, for object 02, which is of the same sort as o3, we
have observed do.2 < get.1, so we resolve the uncertainty in
the o3 object trace in the same way. If, on the other hand, we
did not have the observations of this order for o5, the choice
between do.2 < get.1 and get.1 < do.2 would be arbitrary,
but would still be resolved the same way for o3 and o2 both.

We formulate the problem of finding a completion of each
of the partial-order object traces, that are mutually consis-
tent and consistent with the constraints observed in the input
action traces, and that minimize the total set of consecutive
events across all sorts, as a binary integer program (BIP). We
conjecture that the problem is NP-hard (it is reminiscent of
a hitting set problem).

For simplicity, we present the formulation using a single
input trace, though the method generalizes naturally to mul-
tiple traces by aggregating individual object transitions from
each trace into the final sort transition matrix.

BIP Variables Given a POAT (A, C), we can encode the
global ordering constraints of the action trace using a matrix
I of binary variables. Likewise, the POOT for each object
o € Oy is represented in a matrix P°. However, partial-
order information alone is insufficient to determine consec-
utive events. Thus, we introduce the object-level transition

matrix F'°, where F; € {0,1}, 4,5 € T%i # j. F; =1
iff the events e; and e; are consecutive, that is, iff ¢; < e;
and there exists no e; < e’ < e;. The constraints on F'° and
P (described below) ensure that when fully assigned, the
two order the events in 7 into a sequence.

Finally, the transitions across all objects of each sort
are aggregated into a sort-level transition matrix 7'°, where
T € {0,1}, 4,5 € mls], s € Sy, m[s] is the number
of events for sort s. T = 1 iff e; and e; are consecutive
in the trace of some object o € O,. 1" thus captures event
transitions independent of specific objects.

Example 3 The transition matrices of the two sorts in Ex-
ample 1 are:

T do.1l | undo.1 T2 | do.2 | get.1
do.1 ? 1 do.2 0 1
undo.1 ? 0 get.1 ? 0

Note the transition {(do.1,do.1) in T** is undecided because
two do.1 events occur on o1, which may or may not be con-
secutive, given the ordering constraints of the POAT.

In the following sections, we describe the constraints that
links these matrices together, to recover an ordering that is
consistent with the given partial order and that induces a
minimal set of necessary transitions.

Objective Function The objective of the BIP is to mini-
mize the total number of transitions, across all sorts, required
to explain the partially ordered action trace:

mls] m

minimize Z Z Z

s€Sy =1 j=1

Strict partial-order constraints We impose the follow-
ing constraints on I to ensure transitivity and asymmetry of
a strict POAT:

Lij+1; <1 (D
Lij + 1 <Iip +1 2)

for all i,5,z € [1,|A|], i # j, © # i,7. Irreflexivity is
achieved by setting I;; = 0. We only add constraints on I to
ensure it is a strict partial order, not a total order. As men-
tioned earlier, LOCM?2 does not require totally ordered ac-
tion traces, only that we can recover the event sequences for
each object in the trace, and the sort-level consecutive tran-
sitions. In Example 1, it is not necessary to sequence all five
actions: for instance, it is irrelevant whether undo® (o) oc-
curred before or after get®(03). By focusing on object-level
transitions, we gain flexibility in assigning I, and reduce
complexity while preserving the necessary ordering infor-
mation for generating action models using LOCM?2.

I to P Constraints The partial-order matrix P° for each
object 0 € Oy is constrained by the global partial order, as
shown in Lemma 1:

P = Ige(iygo () A3

where i, j € [1,|T°|],4 # j. This ensures the order of events
on each object o is consistent with the global partial order of
actions. It also forces P° to be a strict partial order.

Full ordering constraints We enforce asymmetry on F'°:

FS <1-F5 @)

1] —

This states that if event e; directly precedes e;, then e; can-
not directly precede e;, while it is also possible that e; and
are not adjacent, i.e., that Ffj = F;’i =0.
The full order also requires that if two events are consec-
utive, no other event occurs between them:

Fio=1 < F, =0AF;;, =0,

where Va € [1,|7°|],z # 4, ;. This is enforced in the BIP
by constraining each row and column of F° to have a sum
of no more than 1:

7 7]

ZF"gl ZF0§1 (5)

Finally, the total sum of the F'° matrix must equal |7°| — 1:

I7117°]

2.2

i=1 j=1

Fo=[T°| -1 (6)

The constraints on row, column, and total sum ensure that all
the events on o are ordered in a sequence. The total sum con-
straint ensures that the number of edges is exactly |7°| — 1,
avoiding any cycles. The row and column constraints ensure
that each event is connected at most once as either a prede-
cessor or successor, thus preventing forming a tree.

P to F Constraints The connection between F° and P°
for object o is given by

Ff < P @)
This follows since if Pi(_’j = 0 indicating e; # e;, then e;
and e; cannot be consecutive, so F;%, = 0 must hold. This
ensures that F'° is consistent with P° by permitting only
valid consecutive transitions in accordance with the partial
ordering constraints.

F to T Constraints Finally, we construct the transition
matrix T of each sort s by aggregating over all £'° matrices
for o € O,, based on the fact that if we observe that e; and ¢;
are consecutive for any o, then they are consecutive events
for s, ie., T = 1, if do € Os,Fﬁj, = 1, where e; = e,
and e; = ej. This is encoded with the following constraint:

Fi, <Tj ®)

Solution extraction Minimizing the total sum of transi-
tions across all sorts ensures that a minimal set of transi-
tions needed to explain the given trace is selected. Since the
global ordering matrix [is only as constrained as necessary,
the global partial order in the BIP solution may differ signif-
icantly from the ground truth. However, this does not impact
the accuracy of the final transition matrix 7 for each sort
s, which is our primary concern. By enforcing consistency
between matrices PP° and [and between F'° and P°, a total
order of the event trace for each object is secured by the so-
Iution. T then aggregates over F° for all objects 0 € O,

Domain |S| [P] mP |A m.A |T| m.T
spanner 6 6 2 3 4 19 6
miconic 2 6 2 4 2 29 16
sokoban 3 4 3 2 5 18 9
childsnack 6 13 2 6 4 40 16
ferry 2 5 2 3 2 12 6
blocksworld 1 5 2 4 2 13 8
transport 7 5 2 3 5 24
satellite 4 8 2 5 4 41 13
floortile 4 10 2 7 4 48 15

Table 1: Statistics of the planning domains in our data set.
|S| is the number of sorts, |P| the number of predicates and
|A| the number of actions; m.P and m..A are the maximum
arity of predicates and actions, respectively. 7 is the total
number of transitions observed in the plan data, m.7 is the
maximum transitions by sort.

Raw Plans Length Distribution Traces Sets Length Distribution

= fx

z
£ \

\ \
200 \ \
\

\\
100 \ \\
o

o S = - .
0 100 200 300 400 500 600 700 80 0 200 400 600 800 1000
len len

Figure 1: Distribution of the lengths of raw plans, and the
total length of the learning objects (trace sets) generated by
randomly sampling segments from raw plans.

providing a minimal subset of consecutive transitions that is
consistent with the given POAT.

The sort transition matrices and object event sequences
are extracted from the solution to the BIP and input to
LOCM?2, which produces a STRIPS domain model.

Example 4 Minimizing T'°2 in the BIP for Example 1 will
result in (do.2, get.1) being the only consecutive event pair
of this sort; this implies I;3 = 1, i.e., do* < get®. do*
can be ordered either before or after undo?; both choices
are consistent with the ordering constraints implied by min-
imizing T°'. Thus, there are two minimal sets of consecu-
tive event pairs for s1: {(do.1,do.1), (do.1,undo.1)} and
{{do.1,undo.1), (undo.1,do.1)}. If only one of them is ac-
tually possible, we expect that as more traces are observed,
the correct pair will eventually be seen, at which point min-
imization will eliminate the other.

Experiment

We start from an existing plan dataset (Chen, Trevizan, and
Thiébaux 2024), covering 9 domains summarised in Table 1,
with 30 plans from different instances in each domain.

To create a wider distribution of training set sizes, and
increase the diversity of plan initial states, we create ac-
tion trace sets of varying total length, by randomly selecting
contiguous segments of varying lengths (ranging from 10 to

100) from plans in the dataset, and selecting varying num-
bers of these traces (small: 1, medium:5, large: 10) to form a
trace set for learning. The total combined length of all traces
in each set is at most 1000. Figure 1 shows the distribution of
plan lengths in the original dataset (left) and of total lengths
over trace sets in our training collection (right).

We evaluate POLOCM over POATs of varying degrees of
partial ordering. To do this, for each flex value, ranging from
0.1 to 1 and for each totally ordered action trace set, we in-
crementally remove the ordering constraint for comparable
action pairs until the desired flex level is achieved.

We compare POLOCM to the BASELINE approach which
considers all linearisations of the partial-order input traces as
observations. The baseline set of consecutive events is com-
puted without enumerating linearisations, since each pair of
actions a; and as in the POAT are consecutive in some lin-
earisation unless either as < a1, or there exists an action ag
such that, a; < az < as. Note that the set of consecutive
events computed by the baseline approach will always be a
superset of that obtained from the BIP solution. For exam-
ple, since both do* < get® and get® < do* occur in possible
linearisations of the POAT in Example 1, the baseline algo-
rithm will consider both (do.2, get.1) and (get.1,do.2) to
be transitions of sort sq. Effectively, this approach will set
every undecided entry in the transition matrix of each sort to
1, resulting in a solution with a total of 5 transitions instead
of the minimum of 3, shown in Example 4.

All experiments were run on a cluster node with 32 CPUs
and a 48GB memory limit, with a 600-second timeout for
each learning task. We use the CPLEX solver, with an indi-
vidual memory limit of 4GB, and count a task as solved only
if the BIP was solved to optimality.

Runtime

Figure 2 shows the percentage of problems solved within
the 600-second limit, totalled over all domains (in red) and
with domains divided into three groups, which show dif-
ferent scaling behaviour. Recall that only learning tasks for
which the BIP is solved to optimality are counted as solved.
The combination of medium to high disorder and increas-
ing size of the input trace set makes solving the BIP more
time consuming in all domains (as shown in the middle and
right figure). However, at lower flex values (< 0.3) there is
a clear difference between domains (in blue and green) in
which difficulty does not appear to increase with the size of
the input and domains (in purple) in which it does.

Reconstruction Accuracy

We measure the BIP’s ability to recover ordering informa-
tion from partially ordered data by the accuracy of the sort-
level transition matrices extracted from the BIP solutions for
partially ordered action trace sets compared to the transition
matrices based on the corresponding sets of totally ordered
traces. Given transition matrices extracted from the BIP so-
lutions T (prediction) and from total-ordered traces T°*
(ground truth), accuracy is the fraction of equal entries in

Low flex (0.1-0.3)

Medium flex (0.4 - 0.6)

High flex (0.7 - 0.9)

1.0+

0.8 1

0.6 4

success rate

0.4 4

0.2+

0.0 1

length

600 800 200 400 600 800
length

Figure 2: Percentage of problems solved within the 600s time limit by POLOCM, plotted against the total length of the input
trace set, and across different flex levels. Blue: [spanner, minconic, sokoban, childsnack]; Green: [ferry, blocksworld, transport];

Purple: [satellite, floortile]; Red: all domains.

o |- I : o

06 06
04 04
02 02

00 00

(a) acc/err vs. len (b) acc/err vs. flex

Figure 3: Accuracy and error rate trends with respect to
(a) length of the input trace set, as a percentage of the
total length of all plans for the domain; and (b) flex:
POLOCM accuracy (blue), error rate (green); BASELINE
accuracy (red), error rate (orange). Dotted lines represent
mean values; shaded regions indicate the interquartile range
(25th—75th percentile). Only learning tasks solved within the
time limit are included.

T and T**, averaged over all sorts:

ace — - > 24T, =171
S| |72
SseS

‘We also measure the one-sided error rate, which is the frac-
tion of consecutive transitions allowed in the transition ma-
trices obtained from the BIP solution but not by the transi-
tion matrices derived from the totally ordered data:

1 Z i1 > 7571
|T[?

Figure 3 shows how accuracy and error rate vary with (a)
increasing training set size, as a percentage of the total size
of the plan set for the respective domain, and (b) degree of
disorder (flex). BASELINE, which creates a more permis-
sive model, consistenty has lower accuracy, and significantly
higher error rate (i.e., more false positives) than POLOCM.
Neither approach is significantly affected by the size of the
training set, but for POLOCM the accuracy decreases (and
error rate increases) steadily with flex.

Generalization

Because the domain model is learned from observations of
action traces only, the predicates it uses to define them have
no relation to those of the hand-crafted domain that the train-
ing traces were generated from. This makes a direct compar-
ison of the learned and true domain models challenging, as
we cannot (automatically) map states of an instance of one
domain to equivalent states of the other. Instead, we mea-
sure the acceptance rate of plans, both valid and invalid in
the ground truth domain, by testing if, for each plan, there
exists any initial state of the learned domain that it is ex-
ecutable from; such a state exists unless a precondition of
some action in the sequence is deleted by an earlier action,
which can be checked in linear time. The acceptance rate
of a learned domain is simply a/n, where a is the number
of plans that the domain accepts and n is the total number
of test plans. We use this metric to measure the learned do-
main’s ability to generalize by evaluating it over a larger set
of traces than that from which the domain was learned. In-
valid plans are created by taking a valid plan, accepted by
the learned domain, and appending an action that can not be
executable in the plan’s end state according to the ground
truth domain. The invalid action is selected at random from
action schemas that appear in the accepted plan. We com-
pare the domains learned by POLOCM and BASELINE from
partial-order traces to those learned by LOCM?2 from the cor-
responding total-order traces.

Figure 4 shows valid and invalid acceptance rates against
the training set size, as a percentage of the total size of the
test plan set, and flex. As expected, more input data typi-
cally improves generalization. At moderate flex values, the
acceptance rates of domains learned by POLOCM are close
to those obtained from LOCM?2 on the corresponding totally-
ordered traces, which is a limit on the best it can achieve by
reconstructing the total order exactly. At higher degrees of
disorder, however, domains learned by POLOCM become
increasingly less reliable. The BASELINE approach, being
more permissive, consistently yields high acceptance rates,
for both valid and invalid plans.

Due to limited data at higher flex levels (cf. Figure 2), we

Low flex (0.1-0.3)

06

04

acceptance rate

02

0.0

len %

Medium flex (0.4 - 0.6)

High flex (0.7 - 0.9)

len % len %

Figure 4: Mean valid (solid) and invalid (dotted) acceptance rates by trace set length as a percentage of the total test set length,
across different flex levels, comparing the results of POLOCM (blue) and BASELINE (red) on partially ordered input, and
LOCM? (green) on totally ordered input. Timed out learning tasks omitted.

Group1: spanner, miconic, sokoban, childsnack

Group2: ferry, blocksworld, transport

Group3: satellite, floortile

08

=4
=]

Acceptance Rate
o
=

2
N

0.0

len %

len % len %

Figure 5: Mean valid (solid) and invalid (dotted) acceptance rates against input trace set length as a percentage of the total test
set length under low flex levels (0.1-0.3), across the three groups of domains. From left to right: [spanner, minconic, sokoban,
childsnack], [ferry, blocksworld, transport], and [satellite, floortile]. Results compare POLOCM (blue), BASELINE (red), and

LOCM? (green). Timed out learning tasks omitted.

examine POLOCM’s performance in different domains at
lower flex values (0.1-0.3). Figure 5 shows acceptance rates
of domains divided in three groups, which exhibit different
difficulty. In group 1, POLOCM closely matches the perfor-
mance that LOCM?2 achieves with totally ordered input, and
it achieves a better trade-off between valid and invalid ac-
ceptance than the more permissive BASELINE approach in
all three groups.

Future Work

POLOCM represents a first, but significant, step toward
learning planning models from partially observable action
trace data, moving us closer to practical application on real-
world, imperfect data sources like natural language. How-
ever, there are several further steps to explore.

First, in this paper, we have only considered learning tasks
for which the BIP is solved to optimality within the time
limit. Clearly, this is not a necessary limitation: The baseline
approach constructs a feasible, but sub-optimal, solution to
the BIP ordering problem, and of course any improvement
on solution can be used in its place, even if not optimal.

Second, we have treated the given partial order on action

traces as true. In some settings this is not a valid assump-
tion, as observations of action order can be incorrect as well
as missing. There are several ways to relax this assumption:
Gregory et al. (2017), in LC_M, fix a threshold and discard
transitions with fewer observed occurrences. In our optimi-
sation formulation, we can treat all observations as‘“soft”,
i.e., ignorable at a cost, and optimise the two objectives of
minimising model transitions and preserving the observed
trace order. This raises the challenge of either defining a
weighted trade-off between the two objectives, or solving
a multi-objective problem.

Finally, we aim to deal with partial or noisy observations
of several aspects of the input action traces, such as miss-
ing or incorrectly identified action arguments in addition to
partial action order. This can be achieved by combining the
different kinds of uncertainty into one optimisation problem
that seeks, again, a domain model that best fits the observa-
tions while minimising spurious assumptions.

References

Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artif. Intell., 275:

104-137.

Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty, S.
2018. A review of learning planning action models. Knowl.
Eng. Rev., 33: e20.

Boselli, R.; Cesarini, M.; Mercorio, F.; and Mezzanzan-
ica, M. 2014. Planning meets Data Cleansing. In Proc.
24th International Conference on Automated Planning and
Scheduling (ICAPS).

Chen, D. Z.; Trevizan, F. W.; and Thiébaux, S. 2024. Return
to Tradition: Learning Reliable Heuristics with Classical
Machine Learning. In Proc. of the 34th International Con-
ference on Automated Planning and Scheduling (ICAPS-24),
68-76. AAAI Press.

Cordier, M.; and Thiébaux, S. 1994. Event-Based Diagnosis
for Evolutive Systems. In Proc. 5th International Workshop
on Principles of Diagnosis (DX’ 94), 64—609.

Cresswell, S.; and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In Proc. of the
21st International Conference on Automated Planning and
Scheduling (ICAPS-11). AAAL

Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009. Ac-
quisition of Object-Centred Domain Models from Planning
Examples. In Proc. of the 19th International Conference on
Automated Planning and Scheduling (ICAPS-09). AAAL
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2013. Ac-
quiring planning domain models using LOCM. Knowl. Eng.
Rev., 28(2): 195-213.

Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell., 2(3/4): 189-208.

Gosgens, J.; Jansen, N.; and Geffner, H. 2024. Learning
Lifted STRIPS Models from Action Traces Alone: A Sim-
ple, General, and Scalable Solution. arXiv, 2411.14995v1.
http://arxiv.org/abs/2411.14995v1.

Grand, M.; Pellier, D.; and Fiorino, H. 2022. An Accurate
PDDL Domain Learning Algorithm from Partial and Noisy
Observations. In Proc. of the 34th IEEE International Con-
ference on Tools with Artificial Intelligence (ICTAI 2022),
734-738. IEEE.

Gregory, P.; Lindsay, A.; and Porteous, J. 2017. Domain
Model Acquisition with Missing Information and Noisy
Data. In KEPS 2017. Association for the Advancement of
Artificial Intelligence (AAAI).

Haslum, P.; and Grastien, A. 2011. Diagnosis as Planning:
Two Case Studies. In ICAPS’11 Scheduling and Planning
Applications Workshop.

Lamanna, L.; and Serafini, L. 2024. Action Model Learning
from Noisy Traces: a Probabilistic Approach. In Proc. of the
34th International Conference on Automated Planning and
Scheduling (ICAPS-24), 342-350. AAAI Press.

Lamanna, L.; Serafini, L.; Saetti, A.; Gerevini, A. E.; and
Traverso, P. 2025. Lifted action models learning from partial
traces. Artif. Intell., 339: 104256.

Le, H. S.; Juba, B.; and Stern, R. 2024. Learning Safe Action
Models with Partial Observability. In Proc. of the Thirty-
Eighth AAAI Conference on Artificial Intelligence (AAAI-
24),20159-20167. AAAI Press.

Li, R.; Cui, L.; Lin, S.; and Haslum, P. 2024. NaRuto: Auto-
matically Acquiring Planning Models from Narrative Texts.
In Proc. of the Thirty-Eighth AAAI Conference on Artificial
Intelligence (AAAI-24), 20194-20202. AAAI Press.

Li, R.; Haslum, P,; and Cui, L. 2023. Towards Learning
Action Models From Narrative Text Through Extraction and
Ordering of Structured Events. In Proc. 36th Australasian
Joint Conference on Artificial Intelligence, volume 14472 of
LNCS, 16-217.

Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous, J.;
and Gregory, P. 2017. Framer: Planning Models from Natu-
ral Language Action Descriptions. In Proc. of the 27th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-17),434-442. AAAI Press.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C. A.;
Ram, A.; Veloso, M.; Weld, D. S.; and Wilkins, D. E. 1998.
PDDL—The Planning Domain Definition Language. Tech-
nical Report DCS TR-1165, Yale Center for Computational
Vision and Control.

Mcllraith, S. 1994. Toward a Theory of Diagnosis, Testing
and Repair.

Mourio, K.; Zettlemoyer, L.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In Proc. of the 28th Conference on
Uncertainty in Artificial Intelligence (UAI 2012), 614-623.
AUALI Press.

Muise, C. J.; Beck, J. C.; and Mcllraith, S. A. 2016. Optimal
Partial-Order Plan Relaxation via MaxSAT. J. Artif. Intell.
Res., 57: 113-149.

Olmo, A.; Sreedharan, S.; and Kambhampati, S. 2021.
GPT3-to-plan: Extracting plans from text using GPT-3.
arXiv preprint arXiv:2106.07131.

Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2010. In-
cremental Learning of Relational Action Models in Noisy
Environments. In Inductive Logic Programming: Revised
Selected Papers of the 20th International Conference (ILP
2010), volume 6489 of Lecture Notes in Computer Science,
206-213. Springer.

van der Aalst, W. M. P. 2013. Business process manage-
ment: A comprehensive survey. ISRN Software Engineering,
2013(1): 507984.

Zhuo, H. H.; and Kambhampeati, S. 2013. Action-Model Ac-
quisition from Noisy Plan Traces. In Proc. of the 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
13), 2444-2450. IJCAI/AAAL

Zhuo, H. H.; Peng, J.; and Kambhampati, S. 2019. Learn-

ing Action Models from Disordered and Noisy Plan Traces.
CoRR, abs/1908.09800.

