
Automated Planning with Ontologies under
Coherence Update Semantics

(Extended Abstract)∗

Stefan Borgwardt1 and Duy Nhu1 Gabriele Röger2

1 Institute of Theoretical Computer Science, Technische Universität Dresden,
Germany

{stefan.borgwardt,hoang_duy.nhu}@tu-dresden.de
2 Department of Mathematics and Computer Science, Universität Basel, Switzerland

gabriele.roeger@unibas.ch

Automated planning is a core area within Artificial Intelligence that describes
the development of a system through the application of actions [9]. A planning
task is defined by an initial state, a set of actions with preconditions and effects
on the current state, and a goal condition. States can be seen as finite first-order
(FO) interpretations, and all conditions are specified by FO-formulas that are
interpreted on the current state under closed-world semantics, i.e. absent facts
are assumed to be false. A (ground) action is applicable if its precondition is
satisfied in the current state w.r.t. an assignment of its variables. The objective
is to select a sequence of applicable actions to reach the goal, called a plan. To
facilitate expressive reasoning in the standard closed-world planning formalisms,
logical theories under open-world semantics can be added to describe the possible
interactions between objects of a domain of interest. Particularly, we are inter-
ested in Description Logics (DLs) and their application in reasoning about the
individual states of a system. The main challenge is to reconcile the open-world
nature of DLs and the closed-world semantics employed in classical planning.

Explicit-input Knowledge and Action Bases (eKABs) combine planning with
the description logic DL-Lite [5]. There, states (ABoxes) are interpreted using
open-world semantics w.r.t. a background ontology (TBox ) specifying intensional
knowledge using DL-Lite axioms. The background ontology describes constraints
on the state and entails additional facts that hold implicitly. Such a planning
problem can be compiled into the classical planning domain definition language
(PDDL) using query rewriting techniques [5].

Example 1. Consider the following axioms and facts in a blocks world:

on_block ⊑ on, ∃on_block− ⊑ Block, funct on_block,

on_table ⊑ on, ∃on_table− ⊑ Table, Block ⊑ ¬Table,
Block ≡ ∃on, ∃on_block− ⊑ Blocked,

∃on_block ⊑ ¬∃on_table, on_block(b1, b2), on_table(b3, t)

Implicitly, we know that b2 is blocked (Blocked(b2)) since b1 is on b2
(on_block(b1, b2)) and every block that has another block on top is blocked
⋆ Full paper accepted at KR’25 [3,4]



2 S. Borgwardt, D. Nhu, and G. Röger

(∃on_block− ⊑ Blocked). On the other hand, we know that on_block(b1, b3)
cannot hold, since the on_block relation is functional (funct on_block).

Consider now the action move(x, y, z) that moves Block x from position y
to z. Its precondition is [on(x, y)]∧¬[Blocked(x)]∧¬[Blocked(z)], where the atoms
in brackets are evaluated w.r.t. the ontology axioms under epistemic semantics.
In particular, the precondition requires that the ontology must entail that x is
on top of y. Moreover, under the epistemic semantics, ¬[Blocked(x)] means that
the ontology does not entail Blocked(x) (but not necessarily that ¬Blocked(x)
is entailed). For example, the action is applicable for the substitution x 7→ b1,
y 7→ b2, z 7→ b3, since on_block is included in on and neither Blocked(b1) nor
Blocked(b3) are entailed.

One property of eKABs is that action effects ignore implicit knowledge and
only check whether the subsequent state is consistent with the TBox, which leads
to the problems demonstrated by the next example.

Example 2.

(i) One effect of move(b1, b2, b3) is to add on_block(b1, b3) to the state (ABox),
which would result in an inconsistent state, as argued previously, and
therefore the action would not be applicable.

(ii) We could add the effect ¬on(b1, b2) to obtain a consistent state. However,
since on(b1, b2) is not explicitly present in the state, this operation would
not affect the state at all, and [on(b1, b2)] would continue to hold due to
the presence of on_block(b1, b2).

(iii) Moreover, even if we explicitly remove on_block(b1, b2), we would lose the
information that b2 is a block.

This illustrates that, when executing actions, we have to take care of three
types of implicit effects: adding a fact requires (i) removing any conflicting facts
to ensure consistency, whereas removing a fact requires (ii) removing all stronger
facts, and (iii) adding previously implied facts to avoid losing information. Ad-
dressing these challenges, the coherence update semantics was introduced for
updating an ABox in the presence of a DL-Lite TBox, where the updated ABox
can be computed with a non-recursive Datalog¬ program [6]. However, this se-
mantics considers only single-step ABox updates, whereas, for planning, such
implicit effects need to be considered for each action on the way to a goal.

Here, we consider DL-Lite(HF)
core [1] (simply DL-Lite in the following) and

extend eKAB planning by applying the coherence update semantics to action
effects. We investigate the complexity of the resulting formalism of ceKABs
(coherent eKABs) and introduce a novel compilation into PDDL with derived
predicates by utilising the Datalog¬ programs for eKABs [2] and the coherence
update semantics [6]. Moreover, we evaluate the feasibility of our approach and
the overhead incurred compared to the original eKAB semantics in off-the-shelf
planning systems.

In the following, we describe how the coherence update semantics deals with
the implicit effects (i)–(iii). An update contains a set of insertion and dele-
tion operations of ABox assertions. For instance, an update requesting the



Automated Planning under Coherence Update Semantics 3

deletion of on(b1, b2) and insertion of on_block(b1, b3) can be represented by
U = {del(on(b1, b2)), ins(on_block(b1, b3))}. The coherence update semantics [6]
takes an ABox A and computes an updated ABox A′ that differs from A as little
as possible (minimal change property) and is unique up to equivalence w.r.t. T .

Example 3. We express the effect of the action move(b1, b2, b3) in Example 1 by
the above update U . To compute the effects of U , a Datalog¬ program Ru

T is ap-
plied to an initial dataset containing the assertions from A as well as the trans-
lated update requests ins_p_request(c) (del_p_request(c)) for each ins(p(c))
(del(p(c)) in U [6]. In our example, we obtain the initial facts on_block(b1, b2),
on_table(b3, t), del_on_request(b1, b2) and ins_on_block_request(b1, b3).

First, the program Ru
T translates the requests into direct insertion and dele-

tion instructions:

del_on(x, y)← on(x, y), del_on_request(x, y)
ins_on_block(x, y)← ¬on_block(x, y), ins_on_block_request(x, y)

However, the first rule has no effect, since on(b1, b2) is not in the ABox. Instead,
we have to remove on_block(b1, b2) since on_block ⊑ on ∈ T (cf. (ii) from
Example 2):

del_on_block(x, y)← on_block(x, y), del_on_request(x, y)

Additionally, adding on_block(b1, b3) also ensures that on_block(b1, b2) gets
deleted (even if the request for deleting on(b1, b2) would be absent), since other-
wise the functionality of on_block would be violated (cf. (i)):

del_on_block(x, y)← on_block(x, y), ins_on_block_request(x, z), y ̸= z

Finally, due to ∃on_block− ⊑ Block ∈ T , the program retains the
information Block(b2) when on_block(b1, b2) is deleted, by first deriving
ins_Block_closure(b2) (cf. (iii)):

ins_Block_closure(x)← del_on_block(y, x), ¬Block(x),
¬ins_Block_request(x), ¬del_Block_request(x)

This is then translated into an insertion operation if there are no conflicting
requests that would cause an inconsistency (recall that Block ⊑ ¬Table ∈ T ):

ins_Block(x)← ins_Block_closure(x),¬ins_Table_request(x)

In summary, the above rules derive ins_on_block(b1, b3), del_on_block(b1, b2),
and ins_Block(b2) (cf. Example 2).

In addition, the program Ru
T checks whether the same tuple is requested to

be added to on_block and removed from on, as the coherence semantics forbids
this:

incompatible_update()← ins_on_block_request(x, y), del_on_request(x, y)



4 S. Borgwardt, D. Nhu, and G. Röger

The constructed Datalog¬ program is non-recursive and polynomial in the size
of the ontology [6].

For planning, we lift the coherence update semantics to apply it to all ac-
tions in a planning problem. Our ceKAB semantics combines the favourable
behaviours of the epistemic eKAB semantics for action conditions and of the co-
herence update semantics for action effects. Apart from defining the semantics,
our contributions are as follows.

A Polynomial Compilation Scheme for ceKABs. A compilation scheme trans-
lates a ceKAB planning task to a PDDL task s.t. a plan for the ceKAB exists
iff a plan for the PDDL exists. Additionally, if the translation is polynomially
bounded in the size of the eKAB task, then the compilation scheme is poly-
nomial. We develop a polynomial compilation scheme by extending the known
eKAB-to-PDDL compilation from [2]. Additionally, the size of the PDDL plans
is linear in the size of the corresponding ceKAB plans.

Deciding Plan Existence for ceKABs. The coherence plan existence problem asks
whether a plan exists for a DL-Lite ceKAB task. We study the complexity of
the problem by means of a result by [8] on the plan existence problem for classi-
cal planning (PDDL without derived predicates), which is ExpSpace-complete.
By our polynomial compilation scheme and a reduction in the other direction
(PDDL-to-ceKAB), we can show that the same holds for the coherence plan
existence problem.

Experimental Evaluation. We conduct a range of experiments to evaluate the
feasibility of our compilation and its performance compared to the pure eKAB
semantics [2]. Our benchmark collection consists of 159 instances, using the ex-
isting eKAB benchmarks for DL-Lite from [2], as well as the classical Blocks
planning benchmark paired with an ontology. We modify some of the bench-
marks to ensure that all benchmarks have plans under both eKAB and ceKAB
semantics.

We use Downward Lab [12] to conduct experiments with the Fast Downward
planning system [10]. Our main focus is satisficing planning using greedy best-
first search [7] with the FF heuristic [11], as well as a more aggressive variant
F̃F provided by Fast Downward, which provides less heuristic guidance, but is
faster to compute. Considering an extreme case, we also experiment with the
blind heuristic that simply assigns 1 to non-goal states and 0 to goal states.

On most of the benchmarks, we observe that F̃F significantly outperforms
FF in terms of memory and CPU time, due to the combinatorial explosion in the
computation of the FF heuristic. In many benchmark instances, heuristic search
does not perform better than blind search, which indicates a weak support for
derived predicates in the heuristics in general. Compared to the original eKAB-
to-PDDL compilation [2], supporting coherence update semantics imposes extra
strain on the planning system as it introduces more derived predicates to express
the implicit effects.



Automated Planning under Coherence Update Semantics 5

In future work, we will try to extend ceKABs to support more expressive
ontologies, and improve the planning performance by simplifying the Datalog¬
programs used in the compilations or by developing heuristics that better support
the specific structure of the resulting derived predicates.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009). https://doi.org/10.1613/
JAIR.2820

2. Borgwardt, S., Hoffmann, J., Kovtunova, A., Krötzsch, M., Nebel, B., Steinmetz,
M.: Expressivity of planning with horn description logic ontologies. In: Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Con-
ference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twel-
veth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022. pp. 5503–5511. AAAI Press (2022).
https://doi.org/10.1609/AAAI.V36I5.20489

3. Borgwardt, S., Nhu, D., Röger, G.: Automated planning with ontologies under
coherence update semantics. In: Proceedings of the 22nd International Conference
on Principles of Knowledge Representation and Reasoning, KR 2025, November
11-17 (2025), to appear

4. Borgwardt, S., Nhu, D., Röger, G.: Automated planning with ontologies under
coherence update semantics (2025), https://arxiv.org/abs/2507.15120

5. Calvanese, D., Montali, M., Patrizi, F., Stawowy, M.: Plan synthesis for knowl-
edge and action bases. In: Kambhampati, S. (ed.) Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016. pp. 1022–1029. IJCAI/AAAI Press (2016),
http://www.ijcai.org/Abstract/16/149

6. De Giacomo, G., Oriol, X., Rosati, R., Savo, D.F.: Instance-level update in DL-Lite
ontologies through first-order rewriting. J. Artif. Intell. Res. 70, 1335–1371 (2021).
https://doi.org/10.1613/JAIR.1.12414

7. Doran, J.E., Michie, D.: Experiments with the graph traverser program. Proceed-
ings of the Royal Society A 294, 235–259 (1966)

8. Erol, K., Nau, D.S., Subrahmanian, V.S.: Complexity, decidability and undecidabil-
ity results for domain-independent planning. Artif. Intell. 76(1-2), 75–88 (1995).
https://doi.org/10.1016/0004-3702(94)00080-K

9. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice.
Elsevier (2004)

10. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246
(2006). https://doi.org/10.1613/JAIR.1705

11. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001). https://doi.org/10.
1613/JAIR.855

12. Seipp, J., Pommerening, F., Sievers, S., Helmert, M.: Downward Lab. https://
doi.org/10.5281/zenodo.790461 (2017)

https://doi.org/10.1613/JAIR.2820
https://doi.org/10.1613/JAIR.2820
https://doi.org/10.1613/JAIR.2820
https://doi.org/10.1613/JAIR.2820
https://doi.org/10.1609/AAAI.V36I5.20489
https://doi.org/10.1609/AAAI.V36I5.20489
https://arxiv.org/abs/2507.15120
http://www.ijcai.org/Abstract/16/149
https://doi.org/10.1613/JAIR.1.12414
https://doi.org/10.1613/JAIR.1.12414
https://doi.org/10.1016/0004-3702(94)00080-K
https://doi.org/10.1016/0004-3702(94)00080-K
https://doi.org/10.1613/JAIR.1705
https://doi.org/10.1613/JAIR.1705
https://doi.org/10.1613/JAIR.855
https://doi.org/10.1613/JAIR.855
https://doi.org/10.1613/JAIR.855
https://doi.org/10.1613/JAIR.855
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

	Automated Planning with Ontologies under Coherence Update Semantics(Extended Abstract)*

