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Abstract. Achieving seamless coordination in cooperative games is a
crucial challenge in artificial intelligence, particularly when players oper-
ate under incomplete information. While communication helps, it is not
always feasible. In this paper, we explore how effective coordination can
be achieved without verbal communication, relying solely on observing
each other’s actions. Our method enables an agent to develop a strategy
by interpreting its partner’s action sequences as intent signals, construct-
ing a finite-state transducer built from deterministic finite automata, one
for each possible action the agent can take. Experiments show that these
strategies significantly outperform uncoordinated ones and closely match
the performance of coordinating via direct communication.

1 Introduction

In artificial intelligence, autonomous agents often compete or cooperate, reflect-
ing real-world interactions. Games offer structured settings to study such behav-
iors. Much of the research has focused on adversarial games, where agents pursue
goals despite adversarial environments [5,7]. Conversely, cooperative games [6] re-
quire agents to collaborate toward a shared goal. In this paper, we are interested
in shared-control games [4], a form of cooperative game in which two players, the
seeker and the helper, collectively control a single token to achieve a goal. For
instance, in robotic warehouses, a human operator (seeker) navigates to retrieve
items while a support robot (helper) clears obstacles, allowing the operator to
advance to item locations (token). Helper agents with such assistive abilities
have the potential to enhance collaboration with humans in various settings,
from virtual games [3,2] to physical applications like assistive wheelchairs [8].

Shared-control games are especially challenging when players have incomplete
or differing information. Such asymmetry, from partial observations or limited
game understanding, can cause misaligned or suboptimal actions. Direct com-
munication offers a solution by enabling the exchange of relevant information
between players. Recent work leverages large language models to express and
interpret intentions via natural language, improving coordination in human-AI
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teams [9,10,4]. However, direct communication is not always feasible. In such
cases, coordination must rely on inferring intent from observed behavior alone.

In this paper, we consider scenarios where direct verbal communication is
unavailable. In such settings, the helper must infer when assistance is needed
based solely on the seeker’s trajectory. Our framework generalizes shared-control
games [4] by allowing multi-step control for the seeker and introducing a helper
strategy that interprets the observed trajectory for effective coordination. To
obtain a helper strategy, we represent it as a finite-state transducer composed
of several deterministic finite automata (DFAs), each corresponding to a specific
helper action. Each DFA is learned using a variant of Angluin’s L* algorithm [1].
The learned DFAs are then combined into a finite-state transducer that encodes
the helper’s overall strategy.

We evaluated our proposed solution in Gnomes at NightTM, the same testbed
used by [4], comparing the helper’s performance in our no-communication coor-
dination approach with two other cases: a worst-case scenario where the helper
does not try to coordinate at all, and a best-case scenario where the helper coor-
dinates through direct communication. We measure success rates and the number
of steps to complete the game across a given number of trials and different maze
configurations (9× 9 and larger 12× 12). Results show that no-communication
coordination with our solution significantly improves success rates over no coor-
dination in both maze sizes and performs comparably to direct communication.

2 Formal Framework

We extend the shared-control game under incomplete information [4] to allow
the seeker to retain control for multiple steps before transferring it to the helper.
This modification enables intent to be expressed over action sequences rather
than isolated moves. A shared-control game with seeker multi-step dynamics is
defined as a tuple Γ = (S, sinit, sfinal,AS,AH, T S, T H), where S is the finite
state space; sinit and sfinal are initial and goal states; Ai and T i are the private
action sets and deterministic transition functions for each agent i ∈ {S,H}.
We extend the seeker’s transition to action sequences via: T S

∗ (s, [a1, . . . , an]) =
T S(. . . T S(T S(s, a1), a2), . . . , an). A common reward function R : S × (AS ∪
AH) → R captures the cooperative objective of minimizing steps to the goal.

Problem 1. Given Γ and a reward function R, the seeker follows a policy πS :
S×AH → (AS)+ unknown to the helper, but whose resulting actions the helper
can observe. There is no communication between the seeker and the helper. The
goal is to learn a helper policy πH : S×(AS)+ → AH that maximizes cumulative
reward:

max
πH

T∑
t=0

R(st, at) s. t. a0 = [], s0 = sinit, sk = sfinal, for some0 ≤ k ≤ T.{
aS
t+1 = πS(st, a

H
t ) on S’s turn,

aH
t+1 = πH(st,a

S
t ) on H’s turn,

st+1 =

{
T S
∗ (st,a

S
t+1) on S’s turn,

T H(st, a
H
t+1) on H’s turn,

where t indexes turns, and T denotes the total number of turns allowed.
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3 No Communication Coordination (NCC)
The seeker pre-determines a policy πS to express intent through action sequences.
The helper must learn to strategically perform the actions expected by the seeker
when the seeker cannot proceed. To develop a corresponding strategy πH for the
helper, we introduce an automata-learning-based technique. The key insight is
that when the seeker does not need assistance, it will naturally follow the shortest
path. In this case, if the action sequence taken deviates from the shortest path,
the extra actions taken are interpreted as intent information. We capture such
intent information by associating each helper action with a DFA that accepts
such indicative sequences, and use Angluin’s L* algorithm [1] to learn these
intent-response DFAs. The helper plays the role of the learner, querying the
seeker (as the teacher) through membership and equivalence queries.

Membership Query. The seeker generates an action sequence, knowing which
action it expects the helper to perform. The helper extracts intent segments
from the observed sequence, infers an expected action, and performs it. If the
performed action matches the seeker’s intent, the seeker replies “Yes”, and all
extracted segments are positive examples for the corresponding intent-response
DFA Da (where a is the helper’s action) and negative for all others. A “No”
indicates negative membership for Da. By counterfactual intuition, if no coor-
dination is needed, the seeker would naturally follow the shortest path. Hence,
redundancies in the sequence suggest that the seeker’s intent is embedded in
segments outside this shortest path. To identify these “informative” segments,
the helper constructs a subgraph of visited states, computes the shortest path
from prior to current location, and removes it from the action sequence. The
remaining segments are hence intent segments.

Equivalence query. Since the seeker’s strategy πS implicitly encodes the or-
acle DFAs, direct comparison is infeasible. Instead, we approximate equiva-
lence by issuing a certain number of membership queries. Once this bound is
reached, we treat the learned intent-response DFAs D = {Da}a∈AH , where
Da =

{
2A

S
, Qa, qa0 , δ

a, F a
}

, as equivalent to the oracle DFAs.
Helper’s Strategy Construction. The learned intent-response DFAs D allow
the helper to recognize the seeker’s intent solely by analyzing the seeker’s ac-
tion sequences. When the seeker cannot proceed, it becomes the helper’s turn to
strategically provide assistance. Given a game Γ = (S, sinit, sfinal,AS,AH, T S, T H)
and the learned intent-response DFAs D, we define a strategy generator, i.e.,
finite-state transducer T , from which we can immediately obtain a helper’s strat-
egy πH : S×(AS)+ → AH to solve Problem 1. Despite lacking formal optimality
guarantees, we show empirically that the resulting coordination closely matches
that achieved with direct communication.

During the helper’s turn, the helper uses the current state s and the seeker’s
previous action sequence aS to infer the expected next action. Informative seg-
ments are extracted from aS and evaluated against each intent-response DFA in
D. Accepted actions are filtered by the helper’s transition function, and those
with highest frequency are returned as intended actions. Formally, the strategy
generator T = (S, sinit,AS,AH, T S, T H, ϱ, τ) is constructed as follows:
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– S, sinit,AS,AH, T S, T H are the same as in Γ .
– ϱ : S × aS

t+1 → 2S is the transition function, where aS
t+1 = [aS

t1 , . . . , a
S
tn ] is

the observed seeker’s action sequence, such that ϱ(s,aS
t+1) = {T H(s, aH) |

aH ∈ τ(s,aS
t+1)}.

– τ : S × aS
t+1 → 2A

H
is the output function such that τ(s,aS

t+1) =
argmaxa∈AH(s,aS

t+1,AH, T H,D).
T generates a strategy by allowing the helper to arbitrarily select an action
returned by the output function τ(s,aS).

4 Evaluation

We evaluate our approach in the Gnomes at NightTM testbed [4], where each
configuration consists of a maze layout and a treasure location. To assess gen-
eralization, we use 10 unseen layouts for 9 × 9 and 12 × 12 mazes, each with 5
distinct treasure positions, 50 configurations per size. Experiments were run on
a MacBook Pro (Apple M1, 8GB RAM, Python 3.9+).

There are three coordination types with different levels of information ex-
change. In no coordination (NC), the seeker plans its path via a modified A*
algorithm, while the helper, lacking communication, guesses randomly. In direct
communication coordination (DCC), the seeker explicitly communicates its
needs, which the helper executes. In our proposed no communication coor-
dination (NCC), the seeker embeds help requests into its trajectory, which
the helper interprets to act accordingly with our DFA-based method. Across all
settings, the seeker’s behavior is fixed, only the helper’s strategy changes.

Each coordination type is evaluated with n = 100 trials per configuration. A
trial is considered successful if either agent reaches the treasure within m = 300
steps (for 9× 9) or m = 600 steps (for 12× 12); failure otherwise.
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Fig. 1: Success rates (left) and steps taken (right) compared across 50 different
configurations for 9× 9 and 12× 12 mazes.

Success rate is computed as the fraction of successful trials averaged over 50
configurations. The left plot in Figure 1 shows that NCC significantly outper-
forms NC, improving success rates by 61.54% (9×9) and 72.84% (12×12). NCC
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approaches oracle-level performance, with success rates within 4-7% of DCC. A
Mann-Whitney U test confirms NCC significantly outperforms NC (p < 0.001)
in both sizes, while differences between NCC and DCC are not statistically sig-
nificant (p > 0.1). Steps taken is reported as the mean and standard deviation of
steps to termination across trials and configurations. The right plot in Figure 1
shows that NCC reduces steps compared to NC in both maze sizes (p < 0.001),
but requires more steps than DCC (p < 0.001), as expected as NCC requires
more steps to effectively express its intentions through its trajectory.

5 Conclusion

We studied how a helper agent can learn to coordinate with a seeker in coop-
erative games without communication. Our approach uses automata learning to
infer the seeker’s intent by constructing a DFA for each helper action. Experi-
ments show that this method approaches the performance of an oracle with direct
communication. Future work includes iterative strategy refinement, extension to
temporal objectives, and adapting to settings with greater non-determinism,
such as human or environmental interactions.
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