
Eliminating Negative Occurrences of Derived
Predicates from PDDL Axioms

Claudia Grundke and Gabriele Röger

University of Basel, Switzerland
{claudia.grundke,gabriele.roeger}@unibas.ch

Abstract. Axioms are a feature of the Planning Domain Definition Lan-
guage PDDL that can be considered as a generalization of database query
languages such as Datalog. The PDDL standard restricts negative occur-
rences of predicates in axiom bodies to predicates that are directly set
by actions and not derived by axioms. In the literature, authors often
deviate from this limitation and only require that the set of axioms is
stratifiable. Both variants can express exactly the same queries as least
fixed-point logic, indicating that negative occurrences of derived predi-
cates can be eliminated. We present the corresponding transformation.

1 Introduction

In classical planning, world states are described by a truth assignment to a
finite set of ground atoms. The predicates are partitioned into basic and derived
predicates. The actions may only directly affect the basic predicates, whereas the
interpretation of the derived predicates is determined from the interpretation of
the basic predicates by means of a logic program, consisting of so-called axioms.
An axiom has the form P (x)← φ(x) and expresses that the head P (x) is true
if the body φ(x) is true.

Consider as an example a basic predicate E for an edge relation and a derived
predicate path. The axiom path(x, y)← E(x, y)∨∃z(E(x, z)∧path(z, y)) expresses
that there is a path from x to y if there is an edge from x to y, or if x has
some successor z from which there is a path to y. The axioms are evaluated by
interpreting all derived atoms as false and successively making them true based
on the axioms until a fixed point is reached. With this example axiom we would
therefore interpret path as the transitive closure of the edge relation E.

The Planning Domain Definition Language PDDL is the dominant language
for specifying classical planning tasks. The example axiom has the form that
was introduced in PDDL 2.2 [2] and is still in effect today. It is backed up
by compilability results [11] that establish that axioms increase the expressive
power of PDDL. However, the PDDL standard restricts negative occurrences of
predicates in axiom bodies to basic predicates, whereas the compilability analysis
also permits negative occurrences of derived predicates as long as the set of
axioms is stratifiable. This concept partitions the axioms into several strata that
are successively evaluated by individual fixed-point computations. A derived

2 Claudia Grundke and Gabriele Röger

predicate may occur negatively in the body of an axiom if its interpretation has
already been finalized by an earlier stratum.

Consider for an example an additional axiom acyclic()← ∀x¬path(x, x).
The negative occurrence of derived predicate path in this axiom would be

permitted in a stratifiable axiom program but not in PDDL 2.2.
This is not a fundamental limitation because both variants can express ex-

actly the same queries as least fixed point logic (LFP) [10]. In this paper, we
build on known transformations from LFP to directly compile away negative
occurrences of derived predicates from stratifiable PDDL axioms programs. An
extended version [3] with full proofs and a blow-up analysis is available on arXiv.

2 Background

We assume that the reader is familiar with first-order logic (FO). As in PDDL,
we consider finite, relational vocabularies, i.e. no function symbols except for the
constants, and finite structures, i.e. the universe is finite. We write φ(x1, . . . , xn)
to indicate that x1, . . . , xn are the free variables in formula φ. We also use
φ(P1, . . . , Pm, x1, . . . , xn), to indicate that φ does not mention predicate symbols
other than P1, . . . , Pm (treating them as free variables in a second-order formula).

An occurrence of a predicate in a formula is positive if it is under the
scope of an even number of negations. Otherwise, it is negative. For example,
in ∃x¬P (x) ∧ ¬∀y∃z¬(P (y) ∨ ¬P (z)) the first occurrence of P (i.e. P (x)) is
negative, the second one (P (y)) positive, and the last one again negative.

An axiom has the form P (x) ← φ(x), where P (x) is a FO atom and φ(x)
is a FO formula such that P (x) and φ(x) have the same free variables x. We
call P (x) the head and φ(x) the body of the axiom. Stratifiable sets of axioms
syntactically restrict sets of axioms to enable a well-defined semantics. For ease
of presentation, we directly require a specific stratification. This is no limitation
because all stratifications of a stratifiable set are semantically equivalent [1].

Definition 1 (Stratified Axiom Program). A stratified axiom program is
a finite sequence (Π1, . . . ,Πn) of finite sets of axioms (the strata) such that for
all i ∈ {1, . . . , n} it holds for all axioms P (x)← φ(x) in Πi that

– P does not occur in the head of an axiom in a stratum Πk with k ̸= i,
– P does not occur in a stratum Πk with k < i,
– if a derived predicate P ′ appears positively in φ(x) then the axioms having

P ′ in their head are in some Πj with j ≤ i, and
– if a derived predicate P ′ appears negatively in φ(x) then the axioms having

P ′ in their head are in some Πj with j < i.

The semantics can be defined procedurally, iteratively extending a basic state
s (interpreting the basic predicates for the universe of objects in the task, rep-
resented as a truth assignment to the ground atoms) to an extended state that
also interprets the derived predicates. The key operation for an axiom is to con-
sider all possible variable substitutions with objects from the universe and to

Eliminating Negative Occurrences of Derived Predicates from PDDL Axioms 3

Algorithm 1 Extension of a basic state

function extend(stratified axiom program (Π1, . . . , Πn), objects O, basic state sb)
s := truth assignment to all ground atoms a with

s(a) = sb(a) if the predicate of a is basic and s(a) = false otherwise
for i ∈ {1, . . . , n} do extendStratum(Πi, O, s) // modifies s

return s

function extendStratum(stratum Π, objects O, truth assignment s)
while there exists a rule φ← ψ ∈ Π and a substitution σ of the free variables

of ψ with objects such that s |= ψ{σ} ∧ ¬φ{σ} do
Choose such a φ← ψ and σ and set s(φ{σ}) := true

make the head true if the body is true under the current assignment. Algorithm
1 [4] extends the basic state stratum by stratum. Function extendStratum
processes all axioms of the current stratum until it reaches a fixed point.

3 Elimination of Negative Occurrences

We build on a transformation for fixed point logic on finite structures [6, 5],
based on a result for infinite structures [9]. We follow the structure by Leivant
[7, 8] Transferring it to our axiom programs involves as a new contribution the
handling of the simultaneous fixed point within each stratum.

Consider a stratified axiom program P = (Π1, . . . ,Πn) and let Πℓ be the
earliest stratum that derives a predicate that occurs negatively in a later stratum.
Let P1, . . . , Pm be the predicates derived in Πℓ. We construct a program P′ =
(Π1, . . . ,Πℓ−1, Π

′
ℓ, . . . ,Π

′
n) without negative occurrences of derived predicates

from Π ′
ℓ that defines the same fixed point for the predicates from P. Repeating

the process yields a program without negative occurrences of derived predicates.
For the transformation from P to P′ we introduce additional predicates that

can be related to the fixed-point computation for Πℓ. For this purpose, we subdi-
vide this computation into several stages. Function extendStratumInStages
(Alg. 2) modifies parameter s exactly as extendStratum from Alg. 1 and can
replace it within function extend. The iterations of the for-loop (line 2) corre-
spond to the different stages. For each stage, we take a snapshot of the current
assignment and evaluate the bodies of the axioms only relative to this snapshot.
Once a fixed point has been reached, the next stage begins with a new snapshot
and we continue until the snapshot reaches a fixed point.

Consider the execution of extend on a basic state sb and the call of ex-
tendStratumInStages for stratum Πℓ. Let f be the stage where the fixed
point for this stratum is reached (the value of j in Algorithm 2 when it termi-
nates is f+1). For an atom Pi(a), we write |a|sbPi

for the stage in which the truth
of Pi(a) is settled, i.e. |a|sbPi

is the least number l such that sl(Pi(a)) is true in
the execution of extendStratumInStages, or f + 1 if there is no such l.

We use these stages to define a number of auxiliary relations:

4 Claudia Grundke and Gabriele Röger

Algorithm 2 Extension for a stratum in stages

1: function extendStratumInStages(stratum Π, objects O, truth assignment s)
2: for j ∈ 0, . . . do
3: sj := copy of s
4: while there exists a rule φ← ψ ∈ Π and a substitution σ of the free

variables of ψ with objects such that sj |= ψ{σ} and s ̸|= φ{σ} do
5: Choose such a φ← ψ and σ and set s(φ{σ}) := true

6: if s = sj then return

Remember that m is the number of predicates occurring in a head of stratum
Πℓ. For i, j ∈ {1, . . . ,m}, we define the relation ≺i,j such that a ≺i,j b iff
|a|sbPi

< |b|sbPj
. This means that Pi(a) is derived by extendStratumInStages

in a strictly earlier iteration than Pj(b), which possibly is not derived at all.
Analogously, we define relation ⪯i,j as a ⪯i,j b iff |a|sbPi

≤ |b|sbPj
and |a|sbPi

≤ f .

We explicitly represent the complement relations ⊀i,j and ⪯̸i,j , which are
defined as a ⊀i,j b iff |a|sbPi

≥ |b|sbPj
and as a ⪯̸i,j b iff |a|sbPi

> |b|sbPj
or |a|sbPi

=

f + 1. We moreover introduce the relations ◁i,j as a ◁i,j b iff |a|sbPi
+ 1 = |b|sbPj

.
The derivation order within a stage is irrelevant for the relations, so in the

following, we write that Pi(a) is derived before, strictly before, and immediately
before Pj(b) if a ⪯i,j b, a ≺i,j b, and a ◁i,j b, respectively.

Theorem 1. The relations ≺i,j, ⪯i,j, ⊀i,j, ⪯̸i,j and ◁i,j can be defined by a
stratified axiom program with a single stratum.

In the proof, we use the subscript ax (e.g. ≺i,j
ax) to distinguish the predicates

in the axioms from the relations. Moreover, we use subformulas of the form
φ(x)[⪯jy]. These mean that in φ(x) every occurrence of an atom Pk(z) with
k ∈ {1, . . . ,m} is replaced by z ⪯k,j

ax y. Likewise for φ(x)[≺jy].
For example, for φ(x, x′) = ∃x′′(P1(x, x

′′) ∧ P2(x
′′, x′)) where P1, P2 are de-

rived on stratum Πℓ, the formula φ(x, x′)[≺2(y, y′)] is ∃x′′((x, x′′) ≺1,2
ax (y, y′) ∧

(x′′, x′) ≺2,2
ax (y, y′)). Intuitively, it corresponds to φ, where in the evaluation we

may only use the atoms derived strictly before P2(y, y
′).

Similarly, we use formulas of the form φ(x)[¬⊀jy] that replace every occur-
rence of Pk(z) by ¬z ⊀k,j

ax y. Likewise for φ(x)[¬⪯̸jy]. These will be used if
we negate the formulas, so that overall all occurrences are positive again. The
last kind of subformula is φ(x)[⊥], replacing all occurrences of any Pk(z) by ⊥
(false). It is true, if φ is already true during the computation of the first stage.

Proof sketch. We assume w.l.o.g. that Πℓ contains only a single axiom for each
predicate Pi. Otherwise we can combine the bodies of such axioms in a disjunc-
tion, renaming the variables accordingly. We refer to its body as φi(x).

For i, j ∈ {1, . . . ,m}, we use the following axioms (explained below):

x ≺i,j
ax y ←

∨m

k=1
∃z(x ⪯i,k

ax z ∧ z ◁k,jax y) (1)

x ⪯i,j
ax y ← φi(x)[≺jy] (2)

Eliminating Negative Occurrences of Derived Predicates from PDDL Axioms 5

x ⊀i,j
ax y ← φj(y)[⊥] ∨

(∨m

k=1
∃z(x ⪯̸i,k

ax z ∧ z ◁k,jax y)
)
∨ (3)(∧m

k=1
∀z¬φk(z)[⊥]

)
x ⪯̸i,j

ax y ← ¬φi(x)[¬⊀jy] (4)

x ◁i,jax y ← φi(x)[≺ix] ∧ ¬φj(y)[¬⊀ix] ∧ (5)(
φj(y)[⪯ix] ∨

∧m

k=1
∀z(¬φk(z)[¬⪯̸ix] ∨ φk(z)[≺ix])

)
Note that all occurrences of the derived predicates in the bodies are positive.
Eq. (1) expresses that Pi(x) is derived strictly before Pj(y) if it is derived

before some Pk(z), which is in turn derived immediately before Pj(y).
Eq. (2) states that Pi(x) is derived before Pj(y) because Pi(x) can already

be derived using only atoms that are derived strictly before Pj(y).
In its three disjuncts, eq. (3) lists three possibilities why Pi(x) is not derived

strictly before Pj(y): (a) Pj(y) is already derived in stage 1, (b) there is some
Pj(z) derived immediately before Pj(y) and Pi(x) is not derived before this
Pk(z), so Pi(x) is not derived strictly before Pj(y), or (c) nothing can be derived
at all, so both atoms are in the same (last) stage.

Eq. (4) states that Pi(x) is not derived before Pj(y) because it cannot be
derived using only the atoms derived strictly before Pj(y) (expressing ≺ as
negated ⊀ to avoid a negated occurrence of ≺ in the overall negated formula).

In its conjuncts, eq. (5) lists three requirements for Pi(x) being derived im-
mediately before Pj(y): (a) Pi(x) can be derived from the atoms derived strictly
before Pi(x), implying that it is true in the fixed point, (b) Pj(y) cannot be de-
rived from the atoms derived strictly before Pi(x), implying that is not derived
at the same stage as Pi(x) (or earlier), and (c) Pj(y) can be derived from the
atoms derived before Pi(x), or Pi(x) was derived in the stage that reached the
fixed point (and Pj(y) is false in the fixed point). The last property is expressed
by the requirement that all Pk(z) that can be derived from the atoms derived
before Pi(x) can also be derived from the atoms derived strictly before Pi(x). □

We can use these relations to eliminate negative occurrences, for example of
Pi(z): by definition, z ⪯̸i,i z iff |z|sbPi

> |z|sbPi
or |z|sbPi

= f+1. Since |z|sbPi
̸> |z|sbPi

,

this implies that z ⪯̸i,i z holds iff Pi(z) is false in the fixed point of Πℓ (cf.
definition of stage f + 1), or equivalently, ¬z ⪯̸i,i z holds iff Pi(z) is true.

We construct the desired program P′ = (Π1, . . . ,Πℓ−1, Π
′
ℓ, . . . ,Π

′
n) from

P = (Π1, . . . ,Πn) as follows: Π
′
ℓ = Πℓ ∪Πstage, where Πstage is the set of stage

axioms for Πℓ as defined in the proof of Theorem 1. For j ∈ {ℓ + 1, . . . , n},
we construct Π ′

j from Πj by replacing for all i ∈ {1, . . . ,m} in each negative

occurrence of Pi(z) the Pi(z) by ¬z ⪯̸i,i
ax z, where ⪯̸i,i

ax is the predicate symbol
for relation ⪯̸i,i in Πstage.

Conclusion We demonstrated how one can eliminate all negative occurrences
of derived predicates from stratifiable PDDL axiom programs. The extended
version [3] of this paper with the full proof and algorithm as well as an example
shows that the procedure only incurs a polynomial blow-up.

6 Claudia Grundke and Gabriele Röger

Acknowledgements

We have received funding for this work from the Swiss National Science Foun-
dation (SNSF) as part of the project “Lifted and Generalized Representations
for Classical Planning” (LGR-Plan).

References

1. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan
Kaufmann (1988)

2. Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classical part of the
4th International Planning Competition. Tech. Rep. 195, University of Freiburg,
Department of Computer Science (2004)

3. Grundke, C., Röger, G.: Eliminating negative occurrences of derived predicates
from PDDL axioms. arXiv:2510.14412 [cs.AI] (2025)

4. Grundke, C., Röger, G., Helmert, M.: Formal representations of classical planning
domains. In: Bernardini, S., Muise, C. (eds.) Proceedings of the Thirty-Fourth
International Conference on Automated Planning and Scheduling (ICAPS 2024).
pp. 239–248. AAAI Press (2024)

5. Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. Annals of Pure
and Applied Logic 32, 265–280 (1986)

6. Immerman, N.: Relational queries computable in polynomial time. Information
and Control 68(1-3), 86–104 (1986)

7. Leivant, D.: Inductive definitions over finite structures. Information and Compu-
tation 89(2), 95–108 (1990)

8. Libkin, L.: Elements of Finite Model Theory. Springer Berlin, Heidelberg (2004)
9. Moschovakis, Y.N.: Elementary Induction on Abstract Structures, Studies in Logic

and the Foundations of Mathematics, vol. 77. Elsevier (1974)
10. Röger, G., Grundke, C.: Negated occurrences of predicates in PDDL axiom bodies.

In: Proceedings of the KI 2024Workshop on Planning, Scheduling and Design (PuK
2024) (2024)

11. Thiébaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. Artificial In-
telligence 168(1–2), 38–69 (2005)

