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1 Introduction

Epistemic Planning (EP), as an advancement of classical planning, has been
developed to enable sound planning based on agents’ knowledge and beliefs.
Currently, all EP approaches follow the assumption (the “static” assumption
from classical planning) that the environment remains static unless explicitly al-
tered by an agent’s actions. However, in practical applications, this assumption
sometimes fails to hold. For example, it is unrealistic to treat all pedestrians as
static for autonomous driving vehicles operating in busy urban areas. Accurately
modeling pedestrian motion—often represented as a first-order polynomial—is
therefore critical, particularly in scenarios involving jaywalking. Moreover, this
process can be significantly impaired by occlusions such as trucks, increasing
risks to both autonomous vehicles and human drivers. In such situations, expe-
rienced truck drivers may proactively signal surrounding vehicles whose view is
obstructed, based on their nested belief that those drivers lack an accurate belief
about the jaywalker’s motion model. Addressing this gap necessitates an epis-
temic reasoning model capable of accounting for environmental changes, thereby
aligning EP frameworks more closely with real-world applications.

Currently, EP is primarily addressed through three main approaches. The
Dynamic Epistemic Logic (DEL)-based approach [1] was first proposed, and it
maintains a Kripke structure [2] using an event-based model, which requires
explicit action effects to specify modal logic changes. Knowledge Bases strat-
egy is another approach that maintains and updates agents’ knowledge/belief
databases by converting the epistemic planning problems into classical plan-
ning problems [8,7]. When the scale of the problem increases, both DEL and
pre-compilation methods become computationally challenging. To address this
challenge, a state-based approach, Planning with Perspectives (PWP) [5] lever-
ages external functions and lazy evaluation, which enable offloading the epistemic
formula reasoning from the planner, hence improving both efficiency and expres-
siveness. Moreover, they define a semantics that reasons based on solely agents’
observations, which proved can be done in polynomial time with regard to nest-
ing depth. However, the PWP approach only handles knowledge (not belief).
A recent continuation study introduced the Justified Perspectives (JP) model
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to handle the belief [6]. The JP model generates the belief in a way drawing
inspiration from two intuitions of human reasoning: humans believe what they
see; and, for the parts they could not see, humans believe what they have seen
in the past unless they saw evidence to suggest otherwise.

Compared to other approaches, the state-based approach is more suitable
as: 1) it is computationally efficient; 2) it is expressive; and 3) it does not re-
quire modeling epistemic logic updates explicitly (as action effects). Therefore,
in this work, we propose an extension of the JP model to accommodate dynamic
environments.

2 Predictive Justified Perspective Model

In this section, we formally propose the Predictive Justified Perspective (PJP)
Model to model a continuously changing environment.

The definition of the signature ¥ = (Agt,V,D,R), language Larp(X),
states (sets of variable assignments, S and S.. as state spaces and complete-state
space), and model instance M = (Agt,V,D, 7, Oy,..., Of) are adopted from
the JP model [6], as well as three functions: observation function (0; : S — S,
which should be contractive, idempotent, and monotonic), retrieval function (
R: S xZxV = D) and Justified Perspective (JP) function (f; : gz — 52)
Their intuition is that agents reason about beliefs by constructing a justified
perspective (state sequence) according to their own observation (O;), and for
the parts they are not observing, they retrieve the most recent observation (R).

To differentiate from the concept of the “static” variable in Al planning,
the variables in our model are named as processual® variable which are state
variables whose values can evolve as a result of external environmental processes,
independently of the agent’s actions. To describe a set of processual variables,
the processual variable model is denoted as {2, and defined below.

Definition 1 (Processual Variable Model) Given T is a set that includes
all processual variable types, {2 is defined as:

2= (V,T,type,n),where : type:V — T ,n:V = R* x € N. |

To indicate the changing rules, for each processual variable v € V, the type and
coefficients (or parameters) are defined as type(v) and n(v). A “static” variable
is modeled by the new framework as a processual variable with a special type
static. It is considered as a base case (¥=0) in which n(v) ={()}. Unlike classical
planning variables, which are modified exclusively by the agent’s action effects,
processual variables are updated according to not only the agent’s action effects
but also exogenous transition rules or continuous dynamics reflecting changes in
the environment. In the remainder of this paper, the term “variable” refers to a
processual variable unless stated otherwise.

Then, the PJP model inherits the JP model, except for the processual variable
model 2 and the set of all Predictive Retrieval (PR) functions. The PR functions

! The idea of the process is from PDDL+ [4].
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are defined abstractly as follows, providing flexibility and expressiveness for the
modeller to model any variable with a known type.

Definition 2 (Predictive Retrieval Function) A predictive retrieval func-

tion priype(v) - X N x V — D takes the input of a state sequence ?, a
timestamp t and a variable v, and outputs the predicted value of v at t based on
Kl , where type(v) € T is the processual variable v’s type. The predictive retrieval
Junction priype) should satisfy the following properties. Given the input state
sequence § = [sp,...,Sn], its prediction T is defined as P = [po, - -, pn], where
fort' € [O,H}, by = {U:prtype(v)(?at/7v)|v € V}

— Preserving Consistency [Compulsory/:

YoeV,Vt<|s |,ves [t] = T [t](v) = 5 [t](v)

— Recursive Consistency [Compulsory]: Let W - S (S s sequence space),
such that: Vi €W = [@|=|7F| and ¥t <|3| = B[] C B[] C T [1]-

VoV VLT | VB EW = proypeco)(T,1,0) = T [1(0)
— Reconstructive Consistency [Optional/:
VieAgt,HBe§>7 0:(W)=7 =73 =0,(7) u

The prediction function priyp,e(,) estimates the value of variable v at times-
tamp t by deriving v’s changing pattern based on the given state sequence 9.
A wvalid predictive retrieval function must be preserving consistent and recur-
sively consistent. Preserving Consistency ensures the predicted value of the
variable is consistent with its input. This gives Vt < || = S [t] € T [t],
where ? is constructed in the above definition. Recursive Consistency en-
sures that the predictive retrieval function yields stable results when the input
state sequence is the original input state sequence (?) with extra values from

its prediction (? ). This consistency condition requires that for all sequences in

the set of sequences W (which is the same as the original input sequence with
extra assignments from its prediction), applying the predictive retrieval function
to W yields the same predicted value as in ? A simple example involves a se-
quence that contains only one variable v" with values of [1, L, 3, L]. By applying
Preypeoy ([1, L, 3, L], ¢,0") for all timestamps ¢’ < 3, we have predicted values
of v as [1,2,3,4]. Then, for an input sequence that is the same as the origi-
nal sequence but with extra values from its prediction, such as [1,2,3, 1], the
predicted value preype(y([1,2,3, L],#',v") should remain the same for all times-
tamps ¢’ < 3 ([1,2,3,4]). The optional Reconstructive Consistency ensures
that, for all agents, the predictive function is consistent with their own obser-
vation functions. That is, when using the agent’s observation as the input, the
predicted values should not alter the agent’s observation. This property only
ensures agents’ beliefs are justifiable (B;K;¢ = K;p) following the JP model,
while the others ensure beliefs logic following KD45 axioms.
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As a base case, prgiqiic works the same as in the JP model (sttatiC(? Jtv) =
R(?,t,v)). Then, it is up to the modeller to design PR functions for other
processual variable types. With all PR functions that follow Definition 2, we can
now provide our definition to generate justified perspectives with prediction.

Then, we can define a Predictive Justified Perspective (PJP) function for

agent ¢, f; : g — gz similar to the JP function, except that the values of
unobserved variables are not returned by PR functions.

The semantics for the PJP model and the JP model are the same, except
that the perspectives now contain predictions. It is more challenging to show
that the ternary semantics for the PJP model (with all PR functions being
preserving consistent and recursively consistent) satisfies the KD45 axioms,
particularly because “f;(3 ) = £(fi(3))” does not hold. In addition, we claim
that the PJP model follows the same complexity class as the JP model, except
with additional computations on PR functions. The theorems and proofs, as well
as example predictive retrieval functions, can be found in a complete version of
this paper through https://arxiv.org/abs/2412.07941.

3 Experiment

To show the effectiveness and efficiency of the PJP model, experiments are con-
ducted on the most challenging benchmark domain, Grapevine, with the adop-
tion of dynamically changing variables. The vanilla version of the Breadth-First
Search (BFS) is used in all tests to avoid the influence of the search algorithm.

Grapevine domain (8] is a well-known benchmark in EP. It involves three
agents (a, b, and ¢) who can share, lie, or move in two connected rooms (rmy
and rms), and initially, all three agents are located in rm;. Each agent (a as an
example) has a secret (sa), and they can share its value truthfully (ssa = tsa)
or lie about it (ssa = lsa). In this experiment, to make it more challenging,
the agents are allowed to share others’ secrets. That is, they can share others’
secrets based on the values they believe in. It is noted that the other agents
don’t know the truth or falsity of the shared value (e.g. ssa), and thus, when
they share others’ secrets, they can only share the ssa according to their beliefs,
which can be equal to tsa, lsa, or other numbers (e.g. from a false prediction).
To force examining agents’ beliefs instead of knowledge (derived from current
observation), we carefully choose the belief value of ssa and enforce that all
agents need to take a wait action right after any share or lie action.

The following outcome metrics are included to demonstrate the performance
of the PJP model: the number of generated nodes (|gen|), the total execution
time (7¢), the rule of processual variables (Rule of ), corresponding coefficients
for tsa and lsa are provided in column 7(tsa) and n(lsa), the predictive re-
trieval function of the processual variables (pryype(s)), definitions of all pryype ()
functions, the plan length (|plan|), and the goal conditions (Goal).

All source code, including domain encoding, predictive retrieval function im-
plementations, and plan validator, has been released as an open-source project.The
predictive retrieval functions used in this experiment are indicated by their
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names, and the formal mathematical definitions are documented (omitted due
to page limit).

3.1 Result and Discussion

lgen| T(s) Rule of . n(tsa) n(lsa) priypez) |plan| Goal
GO 81 0.11 Prist_poly 2 tsa=5 N Byssa=4
G1 1211 1.78 Prist_poly 4 tsa=T A Byssa="T
G2 1211 2.12 - . PTlinear_reg 4 tsa=T A Byssa=T
@3 421 055 CotrbILSEOILA T ERET 4 tsa=T A Byssa=8
G4 58662 197.07 Prist_poly 7 Bcssa=10 A BoBessa=1
G5 63916 221.56 DPTrist_poly 7  Bcssa=10 A ByBc(ssa # 10 A ssa #.1)
G6 17277 26.84 z=at’> + bt + ¢ [1,0,2] [1,0,0] Prast_poly 6 tsa=38 N\ Bpssa=38
G7 81 0.15 z=a’ [3] [1] Prpower 2 tsa=9 A\ Byssa=9
G8 17277 35.93 z=asin(bt +¢) [8,5,4] [1,1,1]  pren 6 tsa=4.23 A Byssa=4.23

Table 1. Experimental results for Grapevine instances.

The result is shown in Table 1. Variable tsa and [sa are first-order polyno-
mials in G0-Gb5, while we also show other example types in G6, G7, and G8. GO
shows the base case where a only shared tsa once, which means b does not have
enough value to predict ssa. G3 shows that b believes ssa is a value that never
occurred during the currently visited or reached search space (as both tsa and
lsa are smaller than 8). G4 and G5 are challenging instances such as agent ¢
believes the correct ssa value, while agent a is either not aware of that or has
false beliefs on ¢ about ssa.

The experiment results show the PJP model is able to solve problem instances
in EP domains involving dynamically changing variables. By forming agents’
predictive justified perspectives using pri,,.) and f;, the agents are able to
reason about unseen changing variables with reasonable predictions.

The PJP model adopted the strength of the JP model, including arbitrary
nesting and action-model free (without the need to explicitly model action’s
epistemic effects), which makes it suitable for further applications. An interesting
point that can be noticed is that the choice of the predictive retrieval function
may influence the efficiency of the planner. For example, the primear reg used
in G2 is less efficient compared to the analytical method in GI1. -

In addition, when considering a more advanced grapevine domain, where
agents can lie about someone’s secrets to substage other agents’ beliefs about
this someone. This potentially can be handled by a predictive retrieval function
that iterates throughout all the observations and generates all possible coeffi-
cient combinations, then choosing the one with the most occurrences. With the
flexibility of the PJP model, other commonly used outlier rejection algorithms
such as three-sigma rule and Random Sample Consensus (RANSAC) [3] can also
be implemented as a valid PR function. This indicates the possibilities to utilize
the PJP model incorporating external functions to solve broader problems.
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