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Abstract. In classical planning and conformant planning, it is assumed that there
are finitely many named objects given in advance, and that only they can participate
in actions and in fluents. This is the Domain Closure Assumption (DCA). However,
there are realistic open-world deterministic planning problems where the set of ini-
tially given objects changes as planning proceeds: new objects are created, and old
objects cease to exist. These problems are particularly challenging when knowledge is
incomplete. We formulate the bounded proper planning (BPP) problem in first-order
logic, assume an initial incomplete theory is a finite consistent set of fluent literals,
consider a special form of weakly context free action theories, impose an integer up-
per bound on the length of the plan, and propose to organize search for a plan over
sequences of actions that are grounded at planning time. In contrast to numeric or
generalized planning problems, where each state is a finite set, in the BPP each state
can be characterized with infinitely many infinitely sized first order models. We show
how a planner can solve the BPP problem by using a domain-independent heuristic
that guides search over sequences of actions. We discuss the differences between our
approach and the formulations of the planning problem explored previously.

1 Proper Basic Action Theories

This is a shorter version of the paper that appears as [31]. Our focus here is on informal
explanation of [31] and on providing experimental data to illustrate our approach.

We study planning problems when there are numerical variables, when knowledge is
incomplete, and when the actions can create new objects (not mentioned initially) or possibly
destroy objects that participated at the previous steps of planning. To the best of our
knowledge this direction has not been explored before.

As an example, we consider a new variation of the planning problem proposed in [10].
There are trays with pizza slices. There are people who want pizza. The problem is how to cut
some of the available slices and serve pizza to some people so that they will get equally sized
slices. For simplicity, assume that the diameters of all pizzas are the same. Each continuous
pizza piece is characterized with the two angles: the left angle wrt a fixed chosen axis, and
the right angle which is always greater than the left angle. To say that in situation s on
tray, there is a pizza slice with the angles I, r, we use logical fluent available(tray.,l,r,s).
The angles can be any (rational) numbers in the range from 0 to 360. There are situation
independent predicates person(p) and tray(t), but there are no upper bounds on the number
of people and trays, and for simplicity, it is assumed that each tray holds initially only one
slice. In addition, there are fluents served(p,s), a person p was served pizza in s or in a
previous situation, and angleSize(p, n, s) meaning that a person p has a slice with size n
in situation s, where n is the difference between the right and left angles. There are two
actions: serve(t,p,l,r), serve a person p a slice I, r from a tray t, and cutHalf(t,l,r), on a
tray t cut a slice [, 7 into two equal halves that remain on the same tray ¢. The first half has
its angles from ! to 0.5 - (r — [), and the second half is between 0.5 - (r — 1) and r.

We consider a special form of the basic action theory (BAT) D [28]. As usual, it is the
conjunction of the following classes of axioms D= X ADss A Dgp A Dyna A Ds,, where X' are
foundational axioms characterizing situations as sequences of actions, Dss describe effects
and non-effects of actions, D,;, specify action preconditions, Dg, include an incomplete
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logical theory about what is true initially in the situation Sy, and D, are the unique name
axioms (UNA). (For brevity, variables Z,a,s are implicitly V-quantified at front.)

Dy, is a set of first-order (FO) sentences whose only situation term is the initial situation
So. The syntactic form of Dg, is motivated by a proper KB introduced in [19]. More specif-
ically, we assume that Dg, is a consistent finite set of ground fluent literals, i.e., there are
some facts that are known to be true initially and there are some other facts that are known
to be initially false. Dg, generalizes databases by allowing incomplete knowledge about some
of the elements of the application domain: if some fluent literal is not mentioned, then the
Closed World Assumption (CWA) does not apply, and this literal is treated as unknown. In
addition, Dg, includes usual equality axioms & (reflexivity, symmetry, transitivity, substitu-
tion of equals for equals) and therefore Equality Theorem applies [5]. Moreover, as proposed
in [19], Dg, is formulated in a standard first order logic language with a countably infinite
set of (object) constants {C4,Cs, ...}, and no other function symbols. These constants sat-
isfy a set of equality axioms and the set of UNA formulas {C; # C; | i # j}. Informally
speaking, the purpose of these constants is to supply enough entities to answer quantified
queries, since as proved in [19] it is not sufficient to consider only constants mentioned in a
query or in given fluent literals. Another purpose is to provide the names of any objects that
may ever be created or destroyed in the process of planning. Using the logically equivalent
transformations, our proper Dg, can be written as a finite set of implications e — p, where
e is a quantifier-free formula whose only predicate is equality, and p is a fluent literal whose
arguments are distinct variables. Recall that the domain closure assumption (DCA) for
objects [26] means that the domain of interest is finite, the names of all objects in Dg, are
explicitly given as a finite set of constants C1, Ca, ..., Ck, and for any object variable z, Vx
is understood as Vz(x=C1 Vz=Cs V...V 2=Cg). We do not include DCA.

For example, we consider the following proper initial theory where the constants start
with an upper-case letter; we use them instead of symbols C;, C; to improve readability.

Vp((p=JaneV p=KenV p=BobV p=Sue) — person(p))

VE((t=Ty V=T, Vt=Ts) — tray(t))

Vp((p=JaneV p=KenV p=BobV p=Sue) — —served(p, So))

Ve, Lr((t=Ty ANl=0Ar=100) — available(t,l,r, S))

Vi, 1, r((t=T> A1=180 A r=360) — —available(t,l,r,So))
Since we do not include DCA for objects, there might be infinitely many different infinitely-
sized models of Dg, where the pizza slices have different angles. According to Dg,, it is
known that the tray 77 holds the specific slice with the angles between 0 and 100, the tray
T> does not have a slice with a size between 180 and 360, but it is not known if 75 has any
other slices, and nothing is known about the pizza slices on the tray 73, or on any other
trays. For people mentioned in Dg,, it is known they were not initially served, but nothing
is known about any other people not mentioned in Dg,. Thus, every model of Dg, includes
facts mentioned above, and a combination of other facts. When planning for what specific
instantiated action to execute next, note it should be possible wrt all models of Dg,.

Dap is a set of action precondition axioms poss(A(T), s) < I 4(Z, s),
where poss(a, s) is a new predicate symbol that means an action a is possible in situation
s, IT4(Z, s) is a formula uniform in s, and A is an k-ary action function. In this paper, we
consider a special case, when IT4(Z, s) is an extended conjunctive query, e.g., see [4,1]. An
extended conjunctive query (ECQ) is of the form Jx¢(x,y), where ¢ is a conjunction of
positive literals, safe dis-equalities, that is, dis-equalities (#) between variables or variables
and constants, and safe comparisons, that is, arithmetical comparisons (<, >) between
two variables or variables and constants, such that each dis-equality variable, and each
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comparison variable appears in at least one positive literal in ¢. The following are action
precondition axioms for actions in our example.

poss(serve(t,p,l,r),s) « tray(t) A person(p) A available(t,l,r,s),

i.e., action serve(t,p,l,r) is possible in s, if ¢ is a tray, p is a person and there is a slice
available on ¢ with the angles between [ and 7.

poss(cutHalf(t,1,7),s) > available(t,l,r,s) A1 >,

i.e., action cutHalf(t,1,r) is possible in situation s, if there is a slice {, r available on a tray
t in s and its right angle r is greater than its left angle [.
It is easy to see that the actions
[cutHalf(T1,0,100), serve(Ty, Bob, 0,50.0), serve(Ty, Sue, 50.0, 100.0)]

are consecutively possible wrt all models, including those infinite models which have count-
ably many trays and slices. They result in ground situation o where the goal formula
Ip1, p2, n(served(py, o) A served(pa, o) A p1#£p2 A angleSize(p1, n, o) A angleSize(pa,n, o))
holds. However, if Dg, does not include any statements about fluent available(t,l,r, Sy), or
if it includes only the fact that there is no available slice with the angles between 180 and
360 on the tray Ts, then this subtle modification has significant consequences. Namely, there
is no sequence of actions possible in all models that leads to a ground situation o, where the
goal formula holds. Notice the goal formula is an extended conjunctive query.

Let Dgs be a set of successor state axioms (SSA):

F(z,do(a,s)) <> 74 (Z,a,8) V F(Z,8) A 75 (Z,a,s),
where T is a tuple of object arguments of the fluent F', and each of the vp’s is a disjunction
of uniform formulas [3z].a = A(@) A ¢(Z, Z, s),where A(u) is an action with a tuple @ of
object arguments, ¢(Z, z, s) is a context condition, and Z C @ are optional object arguments.
If @ in an action function A(@) does not include any z variables, then there is no optional 3z
quantifier. We consider Weakly Context Free (WCF) successor state axioms in this paper,
see a formal definition in [31]. The SSAs in our example are the following:
served(t, p,do(a, s)) +» AIr(a=serve(t,p,l,r)) V served(t,p,s)
angleSize(p,n,do(a, s)) < I 3Fr(a=serve(t,p,l,7) A\n=(r —1)) V angleSize(p,n, s)
available(t,l',r',do(a, s)) +> I Ir(a=cutHalf (t,L,r) NI'=LAT=0.5-(r = 1))V

NAFr(a=cutHalf (t,1,r) NI'=05-(r =) A/ =r)V
available(t,l,r,s) A a # cutHalf (t,1,7) A ~Ip(a=serve(t,p,l,r),

where n = (r — ) is a function (semantic attachment) that computes the new value n for
fluent angleSize in the next situation that results from performing action serve(t,p,l,r)
in situation s. Similarly, 0.5 - (r — 1) is a function that computes the new left angle (right
angle, respectively) when an action cuts an available slice in half. We say that cut Half (t,1,r)
actions destroy a previously available object, that is a slice with the angles between [ and r,
and also create two new objects, namely, a new slice with the angles between [ and 0.5(r —1),
and another slice with the angles between 0.5(r — 1) and r.

There are two main reasoning mechanisms in SC. One of them relies on the regression
operator [35,27], and another mechanism called progression is responsible for the reasoning
forward, where after each ground action « the initial theory Dg, is updated to a new theory
Ds,,. In this paper, we focus on progression [20].

In general, progression Dg, is defined in second-order logic [20]. However, in this paper,
we consider a special case of proper Dg, in the form of a finite set of ground fluent literals,
which we call a finite grounded proper initial theory (FGP) Dg,. In our special case of weakly
context free SSAs, generalizing the results from [22] one can show that the progression of Dg,
wrt a, P(Dg,,a), remains FGP, and it can be efficiently computed. Informally speaking,
for those new constants (not in Dg,) which are arguments of a fluent literal that enters
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P(Dg,, ), one can say that they represent created objects, while for the constants that
previously occurred in Dg, and are no longer mentioned in progression, one can say that
they represent objects destroyed by «.

If the goal formula is ECQ, our BAT provides the prerequisites for open-world planning
without DCA. We say a BAT is proper, if it satisfies all the conditions in this section. The
bounded proper planning (BPP) problem includes an upper bound N on the plan length.

2 Solving Bounded Proper Planning (BPP) Problem

The BPP problem differs from previously explored planning problems since there are in-
finitely many infinitely sized models of Dg_ due to incomplete knowledge. After each step
of progression, new constants can appear in Dg_ that never appeared there before (objects
were created), and some of the constants that were mentioned previously may no longer
belong to Dg, (objects were destroyed).

It turns out that the BPP problem can be solved using an improved version of the well-
known domain independent heuristic developed for the Fast Forward planner (FF) [18, 3].
See the details in [32,31]. The key idea is that search is actually organized over situations
(sequences of actions) that serve as convenient symbolic proxies for FGP theories (and their
infinite models). The planning algorithm is lifted, since possible actions are determined at
run-time when expanding the current situation to compute successors. In all experiments,
we set the upper bound N to 100, as an obvious over-estimate of the plan length.

plG |plA |p2G |p2A |p3G |p3A |p4G |p4A |p5G|pbA
5 151 |9317 |5 5 60 (3 3 — ]249
14.55(89.69(65.96/13.13(14.83(22.35(14.52(14.52|— [59.76

p6G [p6A |p7G|p7A [p8G |p8A |p9G [p9A|p10G [pl0A
5 67 |5 9 9317 |5 9317(5 10147 |5
12.01]20.92(9.13(64.71|69.23|16.25|65.8 |13.3]|425.43|11.24
Table 1. Addition problems pl-p5, p6-p10: Number of situations expanded and total time (sec)

plG |plA |p2G |p2A |p3G |p3A |p4G |p4A |p5G |pbA
5 5 5 5 5 5 5 5 ) )
14.49]14.59(12.00{12.05|14.82|15.00({14.89|14.76|14.91|15.00

p6G [p6A |p7G|p7A [p8G |[p8A |p9G [p9A [pl0G|pl0A
5 5 5 6 5 5 5 5 5 6
11.99(12.53]9.13(30.84(15.00|15.03{12.08(12.09|10.41 {39.73
Table 2. Multiplication problems pl-p5, p6-pl0 solved using Greedy (G) or A* search (A)

Our planner calls a random number generator to choose between the two priority queues:
the queue “all" includes all successors of explored situations, and the queue “useful" includes
only situations deemed to be useful at the stage of counting relevent easiest actions in a
planning graph when our reachability algorithm back-chains from the final layer with the
goal atoms to the first fluent layer that represents a state produced by an evaluated action.
The easiest relevant actions from the 1st fluent layer together with situation leading to the
1st fluent layer form situations that are inserted into the “useful" queue with an heuristic
value computed for an evaluated action. This is inspired by intuitions similar to the favored
actions proposed in [23, 24], the helpful actions proposed in [18] and generalized to preferred
operators in the Fast Downward planner [15,16]. As demonstrated experimentally in [29],
an additional priority queue for preferred operators is beneficial. We chose 50% : 50%. Note
that “useful" situations can be misleading due to delete relaxation when computing heuristic.
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We have collected data for the generalized Countdown benchmark [30,31]. There are 6
counters that can hold any integers. Initially, our program assigns a randomly generated
integer from 0 to 100 to each counter. There are 2 possible actions: either addition or mul-
tiplication. Each action stores the result in one of the participating counters, but another
counter becomes unavailable. The goal is to produce the target integer in any of the initially
available counters. We randomly generated 10 Addition problems, where the target number
can be produced by adding the initially available numbers, and 10 Multiplication problems,
where the target number is the product of the initial numbers. We run our planner imple-
mented in PROLOG on a desktop computer with an 11th Gen Intel(R) Core(TM) i7-11700K
CPU 3.60GHz, single thread, under the ECLiPSe System version 7.0#63 (April 24, 2022),
using a 75 MB memory limit. The results are presented in Tables 1 and 2 with averages
over 5 runs. The planner can run either Greedy Best First Search (G) or A* search (A). For
some reason, multiplication problems are easier than the addition problem, e.g., the addition
problem 5 was not solved (out of memory). Greedy search expanded more situations than
A* (see the 1st row). However, greedy search was usually faster than A* (see the 2nd row).
Our random planning instances and the domain encoding are publicly available at [30].

3 Related work

Helmert [14] provides a comprehensive classification of the numerical planning formalisms,
demonstrates the cases where the planning problem is undecidable, and explores the reduc-
tions between numerical planning formalisms. The numerical planning problems where the
range of values is finite can be reduced to classical planning with DCA; see, e.g. [11,2]. In
a general case, numerical planning goes beyond DCA. Our proposal is different since we
consider a BPP problem with incomplete knowledge, each model of progression in BPP is
infinite in contrast to numerical planning, where each state is a finite set. Our actions can
have parameters that range over an infinite universe, while this is not allowed in PDDL [13].

Several publications discuss when progression can be formulated in FO logic, e.g., see
[21, 34, 33]. They did not consider Dg, as a proper theory, and did not attempt planning.

Note that in contrast to [8], we do not require that the number of objects where fluent
can be bounded for all s. Informally, boundedness of the set of objects that may ever be
considered by our planner becomes the consequence of working with a proper BAT and
imposing the upper bound on the number of actions.

[32] proposed a lifted deductive planner based on the situation calculus (SC), but their
implementation required both DCA and CWA. Their planner was competitive with Fast
Downward [15,16] in terms of IPC scores based on the number of visited states and the
length of the plan (over classical planning benchmarks with a small number of objects).

[6] considers an extension of classical planning (the universe of objects is finite), with
complete knowledge, but their semantics is based on an unusual object assignment to vari-
ables that can take values outside of the universe. We define created/destroyed objects
syntactically, while they are defined semantically in [6]. Our BPP is more general, since we
plan over infinite domains and consider incomplete knowledge. Our semantics is standard.

To our knowledge, there are no other heuristic planners that can solve problems without
the DCA given incomplete initial theory. The conformant planners previously developed
require DCA [17,25,12]. The planner in [17] was actually inspired by situation calculus, and
it does search over sequences of actions, but it works only at a propositional level. [9] does
open-world planning, but they require DCA, see details in [28].

Future work may consider the case where Dg, may include 3-quantifiers over objects;
they can be replaced with Skolem constants. This case was discussed for proper KBs in [7].
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