
Verified Certification of Unsolvability of
Temporal Planning Problems

David Wang and Mohammad Abdulaziz

King’s College London, London, UK
{mohammad.abdulaziz,david.wang}@kcl.ac.uk

Abstract. We present an approach to unsolvability certification of tem-
poral planning. Our approach is based on encoding the planning problem
into a model checking problem of a network of timed automata. We then
use an efficient model checker to check the network followed by a certifi-
cate checker to certify the output of the model checker. We formally verify
our implementation of the encoding to timed automata using the the-
orem prover Isabelle/HOL, use an existing certificate checker (also for-
mally verified in Isabelle/HOL), and use an unverified, optimised model
checker. This presents a compromise between trustworthiness of the cer-
tification, performance of the certification, and ease of implementation.

Keywords: Temporal Planning · Certification · Formal Verification.

1 Introduction

Automated planning is a mature area of AI research, where great strides have
been achieved in the performance of planning systems as well as their ability to
process rich descriptions of planning problems. This can be most evidently seen
in the improvements in performance and expressiveness through the different
planning competitions, which started in 1998 [6, 9, 15–17], and by the fact that
state-of-the-art planning systems scale to real-world sequential decision prob-
lems.

Despite the great performance of current planning systems and the expres-
siveness of their input formalisms, more could be achieved to improve the trust-
worthiness of their outputs. This is of great importance given the high com-
plexity of state-of-the-art planning algorithms and software, both at an abstract
algorithmic level and at the implementation optimisation level. Indeed, a lot of
work went already into improving the trustworthiness of planning systems and
software. Much of that work has been put into developing certificate checkers
for planning, which are (relatively) small, independent pieces of software that
can check the correctness of the output of a planner. This includes the devel-
opment of plan validators [11, 14], which are programs that, given a planning
problem and a candidate solution, confirm that the candidate solution indeed
solves the planning problem. Furthermore, to improve the trustworthiness of
these validators, other authors have formally verified them, i.e. mathematically

2 Wang and Abdulaziz

proved that those validators and their implementations are correct w.r.t. a se-
mantics of the respective planning formalism. This was done for a validator for
classical planning [3], which is the simplest planning formalism, and another for
temporal planning [1], which is a richer planning formalism wielding a notion
of action duration w.r.t. a dense timeline and that allows for concurrent plan
action execution.

Improving trustworthiness of the correctness of a planner’s output in case
it reports that a planning problem is unsolvable or that a computed plan is
optimal is much harder, nonetheless. In the case of solvability, the computed plan,
which is in most practical cases succinct, is a certificate that can be executed
by the planner. In the cases of unsolvability or optimality claims, obtaining
a reasonably compact certificate substantiating the planner’s output is much
harder: in the worst-case, unless NP = PSPACE [4, Chapter 4], such a certificate
can be exponentially long in terms of the planning task’s size for most relevant
planning formalisms. In practice, such certificates are usually exponentially long,
unless very carefully designed, like those by Eriksson et al. [7], who devised
unsolvability certification schemes for classical planning which can be succinct
for large classes of problems.

Verified
Encoding

Unverified
Solver

Certifier

Input

Output

Fig. 1: The verified
planner architecture
proposed by Abdulaziz
and Kurz, combining
verified (solid) and
unverified (dotted)
modules.

In this work, we consider the problem of certifying
unsolvability of temporal planning, i.e. planning with
durative actions [8]. In general, devising a practical un-
solvability certification scheme is not always possible
as it may require changes to the planning algorithm
to make it more likely to produce succinct certificates.
This is particularly difficult in the case of state-of-the-
art algorithms for temporal planning due to their tech-
nical complexity. The other approach (see Figure 1),
which we follow here, is to encode the respective plan-
ning problem into another type of computational prob-
lem for which there already exists a practical certifying
algorithm. A challenge with this approach’s trustwor-
thiness, however, is that the encoding procedure could
be of high complexity, meaning that, although the out-
put of the target problem’s solver is certified, the cer-
tification’s implication for the source problem depends
on the correctness of the encoding and its implementation. To resolve that, the
encoding, its implementation, and the certificate checker are formally verified
using a theorem prover. This approach was devised by Abdulaziz and Kurz [2],
who used it to develop a certifying SAT-based planning system.

Our main contribution is that we use this approach, where we formally verify
an encoding of temporal planning into timed automata by Heinz et al. [12] and
use a verified certificate checker for timed automata model checking by Wimmer
and von Mutius [18]. Doing that successfully requires substantial engineering of
the implementation and its correctness proof.

Verified Certification of Unsolvability of Temporal Planning Problems 3

t1 t2

a1

t3

a2. . .
a3

. . .

t4

a4

time
π

H(π)

a1

a2

a4

a3

t1

a1 ⊢ a1 ⊣,a2 ⊢

t2

a2 ⊣,a4 ⊢

t3 t4

a4 ⊣

t′
2

a3 ⊢

t′
3

a3 ⊣

inactive

starting!

running

ending!

⟨(lpod1 = 0)?, vpo1 := 0⟩
sea4 :

⟨(vpod1 = 1)?, lpo1 += 1⟩
se′

a2 :

⟨lpod1 −= 1⟩
eea2 :

⟨vpod1 := 1⟩
ee′

a1 :

ie initM !start planM goalM
e1M e2M

Fig. 2: A figure demonstrating a planning problem and its encoding as a net-
work of timed automata. The planning problem models two robots (rb1 and
rb2), two rooms (rm1 and rm2), and four actions (a1 . . . a4): a1 /a4 open/close
the door (d1), and a2 /a3 move rb1/rb2 from rm1/rm2 to rm2/rm1. Top left:
States induced by a plan. rb2 opens the door in the interval (t1, t2). rb1 and rb2
move from rm1/rm2 to rm2/rm1 in the interval (t2, t3). The start of a2 deletes
in(rb1, rm1). The start of a1 /a4 deletes closed(d1)/open(d1). Top right: Time-
line of actions. The end of a1 (a1 ⊣) sets open(d1) to True at t2. The start of
a2 (a2 ⊢) is scheduled for t2. a1 ⊣ and a2 ⊢’s effects are applied simultaneously.
a4 ⊢ is scheduled concurrently with a2 ⊣. a3 ⊢ and a3 ⊣ must be separated from
a1 ⊣ and a4 ⊣ by time, because they all modify the idle(rb2) proposition. Bottom
left: An abstract state-space of an automaton Aai to encode an action ai. Tran-
sitions of some Aai are labelled. Binary variables vp and locking counters lp for
propositions p encode propositional states and invariants respectively. vpod1 and
lpod1 belong to open(d1). Bottom right: A main automaton (AM). e1M initialises
variables. e2M checks that propositional variable assignments satisfy a goal.

Availability A more complete description1 of the project as well as the formali-
sation itself2 can be found online.

2 A Verified Encoding of Temporal Planning

We formally verify the correctness of our certification approach using the theorem
prover Isabelle/HOL. This is done by verifying one direction (if a plan exists for
the given problem then a trace in the network of timed automata satisfying the
formula exists) of the correctness of our encoding, which is based on an encoding
presented by Heinz et al. [12].
1 https://arxiv.org/abs/2510.10189
2 https://doi.org/10.5281/zenodo.17354028

4 Wang and Abdulaziz

A durative action, a, has two operators, a⊢ and a⊣, which are applied when
the action is scheduled to start and end respectively, and an invariant condition
which must hold throughout the action’s execution. The operators have precon-
ditions and effects. The goal of planning is to find a schedule of actions leading
to a goal state. A network of timed automata augments multiple simultaneously
running finite automata with clock variables, which record the passage of time.
Time cannot pass in urgent locations marked with (!).

The characterisation of all abstract states of the network encountered by a
trace simulating the updates in an instant and the proof that the conditions
of transitions are satisfied by the abstract states to which they are applied are
essential components of the larger proof. Unlike in temporal planning, the state
in one instant cannot be updated in a single operation in the network. Instead,
the changes to the states of each action and the effects of the action on the world
are applied in sequence. For instance, when simulating the transition to the state
at t2 in the upper left of Figure 2, the network must encounter an abstract state
in which rb1 is still present in rm1, whereas this state is not encountered in the
state sequence of the plan.

We modify Heinz et al.’s [12] reduction by making startinga! and endinga!, for
any action a, urgent and permitting any action’s automaton to enter and leave
said locations in the same instant, if the simulated operators (i.e. the start a⊢
and end a⊣) do not interfere with other simulated operators in the same instant.
Interference (i.e. contradictory preconditions or effects) of mutually exclusive
operators is avoided by preventing their applications to be simulated in the
same instant using clock constraints in transitions like Gigante et al. [10] do.

We use the idea of binary variables vpp and locking variables lpp for proposi-
tions p from Heinz et al.’s [12] encoding. As seen in the bottom left of Figure 2,
transitions that decrement and increment lpod1 must occur before and after those
that can modify vpod1 respectively. Thus, the order in which abstract states are
visited to simulate an instant is important; a detail that is present in the proof.

We formalise a notion of temporal planning problems and use an existing
formalisation of a notion of timed automata model checking [18]. All definitions
are formalised as data types and functions in Isabelle/HOL’s logic. The encoding
is formalised as a functional program operating on these data types.

We formally prove that the encoding is complete. We define a formula Φ,
which asserts that a run exists, in which AM eventually reaches goalM . We
prove that Φ is satisfied by the network A if a plan π exists (Listing 1.1 shows
the formal theorem statement of the contrapositive in Isabelle/HOL). Wimmer
and von Mutius [18] have formally verified a certificate checker which can certify
that A does not satisfy Φ using certificates computed by an efficient unverified
model checker. This thus completes our own certificate checker.

Listing 1.1: Formal theorem statement in Isabelle/HOL
corollary form_not_sat_imp_no_valid_plan :

2 assumes "¬(ref_model_checking . net_impl .sem ,
ref_model_checking .a0 ⊨ reduction_ref_impl .
formula_spec)"

Verified Certification of Unsolvability of Temporal Planning Problems 5

shows "¬(∃π::(nat , ’action , int) temp_plan .
temp_plan_for_problem_list_impl_int ’ at_start at_end

over_all lower upper pre adds dels init goal ϵ
props actions π)"

4 using assms valid_plan_imp_form_holds by auto

In addition to providing formal correctness guarantees, our formalisation
relaxes some conditions to support a more general definition of plan validity.
For example, by using clock constraints like Gigante et al. [10], as opposed to
a locking automaton like Bogomolov et al. [5] and Heinz et al. [12], we admit
plans with multiple actions starting and ending in an instant. As a drawback,
some transitions must query the value of a number of clock variables, which
scales linearly with the number of actions. We also add the ie transition, which
we conjecture to precisely simulate the execution of an action schedule with a
duration of 0.

Discussion and Future Work The closest piece of work to what we present here is
the verified encoding of classical planning (STRIPS) to propositional satisfiabil-
ity problems (SAT) by Abdulaziz and Kurz [2]. In comparison, the verification of
our encoding is substantially more complex as temporal planning is more expres-
sive than STRIPS planning, due to the inclusion of a timeline and concurrency.
Because of that, the size of our formal proof of correctness of the abstract reduc-
tion (in terms of number lines of code) is 19K, which is the same as encoding of
STRIPS to SAT by Abdulaziz and Kurz. Note, however, that our encoding is not
executable, while that of Abdulaziz and Kurz is. We plan to add executability
to our development and we expect it to be a substantial engineering effort (e.g.
in Abdulaziz and Kurz’s and other verified algorithms projects, it represents
almost 40% of the effort).

Our reduction currently takes grounded temporal planning problems as in-
put. The semantics of those ground problems closely correspond to a subset of
those supported by the verified plan validator by Abdulaziz and Koller. We will
prove this equivalence formally. Another step of future work is making our certifi-
cation mechanism executable. This will involve two things. First, at an engineer-
ing level, we will need to prove the current certification mechanism equivalent
to an executable certificate checker. Second, for full guarantees, we will need to
formally verify a grounder, which will not be straightforward, if we are to use
a scalable grounding algorithm, e.g. the one by Helmert [13], as it will involve
verifying (or certifying the output of) a datalog solver.

Bibliography

[1] Abdulaziz, M., Koller, L.: Formal semantics and formally verified valida-
tion for temporal planning. In: The 36th AAAI Conference on Artificial
Intelligence (AAAI) (2022), https://doi.org/10.1609/aaai.v36i9.21197

[2] Abdulaziz, M., Kurz, F.: Formally verified SAT-Based AI planning. In:
The 37th AAAI Conference on Artificial Intelligence (AAAI) (2023),
https://doi.org/10.1609/aaai.v37i12.26714

[3] Abdulaziz, M., Lammich, P.: A Formally Verified Validator for
Classical Planning Problems and Solutions. In: The 30th Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI) (2018),
https://doi.org/10.1109/ICTAI.2018.00079

[4] Arora, S., Barak, B.: Computational Complexity: A Mod-
ern Approach. Cambridge University Press, 1 edn. (2009),
https://doi.org/10.1017/CBO9780511804090

[5] Bogomolov, S., Magazzeni, D., Podelski, A., Wehrle, M.: Planning as
model checking in hybrid domains. In: Proceedings of the National
Conference on Artificial Intelligence, vol. 3 (2014), ISSN 2159-5399,
https://doi.org/10.1609/aaai.v28i1.9037

[6] Coles, A.J., Coles, A., Olaya, A.G., Celorrio, S.J., López, C.L., Sanner, S.,
Yoon, S.: A Survey of the Seventh International Planning Competition. AI
Mag. (2012), https://doi.org/10.1609/aimag.v33i1.2392

[7] Eriksson, S., Röger, G., Helmert, M.: Unsolvability Certificates
for Classical Planning. In: The 27th International Conference
on Automated Planning and Scheduling (ICAPS) (2017), URL
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15734

[8] Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Tem-
poral Planning Domains. Journal of Artificial Intelligence Research (2003),
URL http://arxiv.org/abs/1106.4561

[9] Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Determin-
istic planning in the fifth international planning competition: PDDL3 and
experimental evaluation of the planners. AIJ (2009)

[10] Gigante, N., Micheli, A., Montanari, A., Scala, E.: Decidabil-
ity and complexity of action-based temporal planning over
dense time. Artificial Intelligence 307 (2022), ISSN 00043702,
https://doi.org/10.1016/j.artint.2022.103686

[11] Haslum, P.: Patrikhaslum/INVAL (2024), URL
https://github.com/patrikhaslum/INVAL

[12] Heinz, A., Wehrle, M., Bogomolov, S., Magazzeni, D., Greitschus, M., Podel-
ski, A.: Temporal Planning as Refinement-Based Model Checking. In: Pro-
ceedings of the Twenty-Ninth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019
(2019), URL https://ojs.aaai.org/index.php/ICAPS/article/view/3476

Verified Certification of Unsolvability of Temporal Planning Problems 7

[13] Helmert, M.: The Fast Downward Planning System. J. Artif. Intell. Res.
(2006), https://doi.org/10.1613/jair.1705

[14] Howey, R., Long, D., Fox, M.: VAL: Automatic Plan Validation, Continuous
Effects and Mixed Initiative Planning Using PDDL. In: 16th IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI) (2004),
https://doi.org/10.1109/ICTAI.2004.120

[15] McDermott, D.V.: The 1998 AI Planning Systems Competition. AI Mag.
(2000), https://doi.org/10.1609/aimag.v21i2.1506

[16] Taitler, A., Alford, R., Espasa, J., Behnke, G., Fivser, D., Gimelfarb,
M., Pommerening, F., Sanner, S., Scala, E., Schreiber, D., Segovia-Aguas,
J., Seipp, J.: The 2023 International Planning Competition. AI Magazine
(2024), https://doi.org/10.1002/aaai.12169

[17] Vallati, M., Chrpa, L., Grzes, M., McCluskey, T.L., Roberts, M., Sanner,
S.: The 2014 International Planning Competition: Progress and Trends. AI
Mag. (2015), https://doi.org/10.1609/aimag.v36i3.2571

[18] Wimmer, S., von Mutius, J.: Verified Certification of Reachability Checking
for Timed Automata. In: 26th International Conference on the Tools and
Algorithms for the Construction and Analysis of Systems (TACAS) (2020),
https://doi.org/10.1007/978-3-030-45190-5_24

